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Chapter 1

Introduction

1.1. Motivation

While the original idea of optical matched spatial filters was introduced by

VanderLugt I more than twenty five years ago, they have not become practicable for the

three main reasons given below.

" The filters required for matched spatial filtering arc complex valuei and thus
cannot be easily accommodated r i currently available Spatial Light
Modulators (SLMs).

" The matched spatial filters (MSFs) are overly sensitive to small changes in the
reference image and thus their performance deteriorates significantly in the
presence of image distortions.

" The light throughput efficienzy of MSFs is low because the filter frequency

response is less than one for many frequencies.

Several ideas have been proposed to alleviate the above problems. Horner and

Gianino 2 suggested the use of Phase-only Filters (POFs) to improve the light efficiency of

correlation filters. Similarly, use of Binary POFs (BPOFs)3' 4 is proposed for easy

implementation on real-time SLMs such as the Magneto Optic SLM (MOSLM). While the

original ideas of POFs and BPOFs have been tested using computer simulations and

optical experiments, not much attention has been paid to deriving optimal POFs and

optimal BPOFs. This research report summarizes the results obtained for designing

optimal POFs and BPOFs under the contract numbered F 19628-88-K-0018 and entitled

"optimal phase-only filters".

| | • 2



1.2. Research Contributions

Following important results were established during this research contract. More

details regarding these results are available in chapters 2 and 3.

* We provided a theoretical proof that the conventional POF introduced by
Horner and Gianino is indeed the optimal (from the viewpoint of maximizing
the Signal-to-Noise Ratio (SNR)) among all unit-modulus filters.

e We proved that the SNR obtained from the conventional POF can be furthc-
improved by selecting the support function of the POF appropriately. The
POFs with support functions chosen to maximize the output SNR are termed
the Optimal POFs (OPOFs).

e We derived an efficient algorithm for selecting the support function of the
OPOF. We have developed the appropriate software and made several
refinements to the basic algorithm to improve its efficiency.

e We carried out extensive simulations to illustrate the SNR im :ovements
obtained by using OPOFs. Using 32 X 32 images of a tank, we observe an
SNR improvement of about 3.5 dB.

& We carried out extensive simulations to quantify the distortion sensitivity of
the OPOFs. It is observed that OPOFs are less sensitive to distortions than the
conventional POFs. Similarly, POFs are more light efficient that OPOFs.

* We developed a method for designing the optimal support function when the
output correlation detector is noisy. It is shown that for low-noise detectors,
the support function will be the same as that of the OPOFs. However, when
the detectors are noisy, the filter support function should be opened up as wide
as possible.

* We showed that the results proved by Farn and Goodman 5 for designing
optimal binary POFs are incomplete and that they missed a subtle point. We
completed this proof and showed that the selection of an appropriate support
function can improve the SNR of the BPOF. These are termed Optimal BPOF
(OBPOFs).

* We developed a very efficient method for deriving the support function for the
OBPOF. This method searches over all po.ssible Threshold Line Angles (TLAs)
to design the optimal support function.

* We have carried out extensive simulations to characterize the OBPOF and
have observed about 5 dB improvement in SNR compared to the BPOF.
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1.3. Organization

The remainder of this report is organized as follows. In chapter 2, we provide the

proofs and results concerning Phase-only Filters. After a brief introduction is Sect. 2.1, we

provide the necessary background in Sect. 2.2. The concept of OPOF is introduced in Sect.

2.3 along with a few illustrative examples. Then we introduce an efficient algorithm for

designing OPOFs in Sect. 2.4. In Sect. 2.5, we present an even faster algorithm that

designs a slightly sub-optimal POF. The distortion sensitivity of the OPOFs is then

evaluated numerically in Sect. 2.6. The OPOFs are extended to the 2-class problem in

Sect. 2.7 and the effects of detector limitations are included in Sect. 2.8.

A similar format is used for the BPOF discussion in Chapter 3. An efficient

algorithm for designing OBPOFs is presented in Sect. 3.2 and some numerical results

obtained using it are presented in Sect. 3.3. A slightly sub-optimal, but very efficient

algorithm is presented in Sect. 3.4. Then, in Sect. 3.5, we unify the OPOF and OBPOF

algorithms. Sect. 3.6 addresses the issue of bifurcation that seems to appear in BPOFs.

Finally, the distortion sensitivity of OBPOFs is explored in Sect. 3.7.
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Chapter 2

Phase-only Filters

2.1. Introduction

Since the introduction of the frequency plane correlator by Vander Lugt1 , matched

spatial filters (MSFs) have been very popular in optical pattern recognition. The MSFs

yield the highest possible Signal-to-Noise Ratio (SNR) when detecting a known

signal/image corrupted by additive white noise. The use of the MSFs in optical processors

requires that. we have the ability to represent both the magnitude and tile phase of the

complex-valued filter plane function. However, several spatial light modulators

(SLMs)6 , 7, 8 of current interest can function in a phase-only mode and thus the filters

ivsed must be phase-only.

Recently, Horner and Gianino 2 ' 9 introduced the notion of using the phase-only

version of the conventional MSF by setting the filter magnitude to 1 for all frequencies.

Such a filter will be referred to as the Phase-Only Filter (POF). Hence, the POF yields

conlinuous variations in its phase function only. Even though this is not directly

compatible with SLMs such as the MOSLN16 , operating in a discrete phase-only mode, the

POF was still considered as a step towards achieving matched filtering using SLMs, and

has triggered considerable amount of research in the area of phase-only filtering. In fact,

many researchers have proposed to bridge this gap by a simple binarization of the POF to

obtain Binary Phase-Only Filters (BPOFs)1 0 ' 3, 1 Yet, despite this increased interest in

the use of POFs, we are not aware of any research that theoretically investigates the

optimality of the conventional POF 2. In this chapter we fill this void and establish
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methods of optimally designing POFs. We provide a formal proof that, with proper

selection of the filter support (i.e., the region consisting of all frequencies at which the

filter's magnitude is non-zero), the conventional POF does indeed yield the highest SNR.

The resulting filter (with the corresponding support) will be termed the Optimal Phase-

Only Filter (OPOF). We also illustrate and quantify the improvement in SNR (resulting

from the use of OPOFs) with the help of both analytical examples as well as realistic

image examples. We analyze the various characteristics of the optimal support for OPOFs,

and provide an efficient algorithm for its design in addition to a very efficient sub-optimal

technique. The sensitivity of POFs and OPOFs to input distortion is also examined, as

well as the effect of detector noise on the design of OPOFs. We must emphasize that this

chapter is intended for the detection of known signals/inmages in noise whereas some of the

other approaches presented in the literature 12. 13, 1-1, 15 are aimed at distortion-invariant

pattern recognition with plhase-only filters.

The remainder of this chapter is organized as follows. In Section 2, we present some

background material related to the detection problem and matched filtering. In section 3,

we provide the derivation of the OPOF along with some analytical examples that illustrate

the resulting improvement in SNR. In section 4, we develop an efficient algorithm for

numerically solving for the support of OPOFs in the presence of white noise. We illustrate

the algorithm using two realistic images (Lank and pliers). Section 5 is used to present a

very efficient sub-optimal algorithm for the design of OPOFs with white noise. While this

algorithm causes a very small loss in SNR (of the order of 10-4 dB), the speed up factor it

leads to is substantial (about two orders of magnitude). In Section 6, we investigate the

distortion sensitivity of OPOFs and POFs to input distortion with the help of computer

simulations. Section 7 deals with a two-class detection problem. Section 8 is devoted to

analyzing the effect of the detector noise on the design of OPOFs. Finally, Section 9

summarizes our results.
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2.2. Background

2.2.1. Matched Filtering

We start with the well-known derivation of the optimality of the matched filter to

set tp some of the notation needed for the following sections. In a detection problem, the

observed signal r(x) is given by

?'(X) = s(X) + II(x) , (2.1)

where s(x) is the known reference signal and n(x) represents additive stationary noise with

zero mean and power spectral density P,(f). The presence of the reference signal is

detected by letting r(x) be the input to a linear, time-invariant system with impulse

response h(x) (or equivalently with transfer function H(f)) and sampling the

corresponding output (without loss of generality) at a = 0. If this sampled output value

exceeds a pre-determined threshold, then the decision that "Signal s(x) is present in r(x)"

is made and if the sampled output value falls below that threshold, it is decided that

"Signal s(x) is not present in r(x)".

To determine the H(f) that yields the best performance, the following Signal-to-

Noise Ratio (SNR) measure is usually maximized.

If S(f) H(f)df 12

SNR - (2.2)

f P n(f) I Jl(f) 12 df

where S(f) is the Fourier Transform (FT) of s(x) and the limits of integration are from

-oo to +oo. The numerator of Eq. (2.2) denotes the square of the modulus of the average

output value when s(x) is present whereas the denominator is the variance in the sampled

output. Thu,, better detection performance is expected with filters yielding higher SNR

values. This SNR is the measure used in the derivation of the classical matched filter16
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and is different from another useful measure known as the Peak-to-Sidelobe Ratio (PSR).

The PSR is defined as the ratio of the square of the output peak value (presumably located

at x = 0) to the variance of the output function away from this peak. Thus, SNR is a

measure of how well a filter performs in the presence of additive noise whereas the PSR is

a measure of how sharp the output peak from that filter is. Unless otherwise stated, we

consider the SNR as our performance criterion as is the practice in classical matched filter

derivation.

To find the filter H(f) yielding the highest SNR, we apply Cauchy-Schwartz

inequality to the numerator of Eq. (2.2) to obtain the following.

i VP,(f) H(f) f)I df I2
v'P,(f)

SNR

f P(f) IH(f),2df

j e(f) IH(f) I'df I If IS PfI dl

/ P,,(f) IH(f)j2df

f df SNR MSF (2.3)

with equality occurring if and only if

8* (f)
H(f) p--(f)- (2.4)

where a is an arbitrary complex constant that does not affect the resulting SNR.



For white noise, P,(f) is a constant and 11(f) = S*(f) or h(x) = s( - x) and the

filter output turns out to be the cross-correlation of the received signal r(x) with the

reference signal s(x). For colored noise, cross-correlation is not equivalent to optimal

filtering. It is worth emphasizing that no other filter (phase-only filter or any other) can

yield a higher SNR than SNRNISF. The optimum filter of Eq. (2.4) can also be written

(assuming a 1) as

IS(f) I - f
H(f) = ( e , (2.5)

P, (f)

where IS(f)l is the magnitude of S(f) and 'P,(f) its phasc function. Thus the optimal

filter is in general complex.

2.2.2. Conventional POF

The concept of phase-only filters (POFs) in optical correlators was introduced in

1984 by Homer and Gianino2 . In order to improve the light throughput of the optical

correlator i , they suggested that the magnitude in Eq. (2.5) be set to 1 at all frequencies.

The resulting phase-only filter (POF) is then

HPOF = e (2.6)

The use of POF was somewhat justified based on the observation 17 that the phase of the

Fourier transform of an image seemed to retain more information than its magnitude.

This POF has been tested with the help of some images and was seen 9 ' 18 to have the

following properties:

o POF yields sharper correlation peaks than the classical matched filter.

'Even though improving the light throughput has been one of the motivations behind the
introduction of POFs, taking the complex matched filter one step closer to its real-time
implementation using the recently developed SLMs is probably an implicitly stronger motivation.

9



* POF has higher light efficiency (in fact, 100%).

* POF results in higher peak-to-sidelobe ratios than the classical matched filter.

While the use of POFs for optical pattern recognition has been justified with the

help of several examples, the approaches presented in the literature so far (except for a

few 15 ) are more or less "after-thoughts", i.e., these POFs are obtained by determining an

optimal filter and then setting its magnitude to a constant arbitrarily. S, ictly speaking,

there is no a priori reason why the phase of the Optimal POF should be set equal to the

phase of the matched filter. Furthermore, the bandwidth of the POF is usually allowed to

be arbitrarily large (usually only limited by the optical system aperture). Even though this

yields sharp correlation peaks, it also allows all the noise present in the input to pass

through unattenuated. Indeed, the POF can be viewed as the cascade of the matched filter

with a second filter whose frequency response equals T-7--. Since IS(f) is usually small
6S(f) I

for high frequencies, the second filter actually turns out to be a high pass filter. This

implicit high-pass filtering effect 10 seems to be the main reason for one of the problems

associated with POFs, namely sensitivity to input noise. Hence, there is a definite need for

proper support selection when dealing with POFs. In the next section, we will describe a

different approach where an optimal phase-only filter will be designed starting with the

constraint that it is a phase-only filter.

2.3. Optimal Phase-only Filters

2.3.1. Derivation of OPOF

We now derive the optimal pha-se-only filter (OPOF) that maximizes the SNR in Eq.

(2.2). Towards this end, let us assume that S(f) is zero for f not in region S. We start

with the constraint that the desired filter 11(f) is of the following form.

H(f) = Ie(f) eU ) , (2.7)

10



where O(f) is the phase of the POF (not necessarily equal to - 8(f)) and where li (f)

denotes the indicator function of the region R (support) defined as

I iff E R (2.8)

I0 otherwise

Using Eq. (2.7), the SNR in Eq. (2.2) can be rewritten as

f S(f) ei' ( } df 12

SNRPOF = (2.9)
R P(f) df

We can find an upper bound to the SNR in Eq. (2.0) as below:

I f IS(f)I es(f)+1(f ) df 12

SNR POF

4 P ,1 ( f ) d f

IS(f)l I e sU(1±(f)) I df ]2

RP,(f)df

[ I S(f)l df ] 2

(2.10)

J P(f)df

Thus for a given support R, the maximum SNR obtainable from any phase-only filter is

given by

11



SNR OPOF-- (2.11)
P,1(fldf

From the first line in Eq. (2.10), we see that the phase-only filter that achieves the optimal

SNR in Eq. (2.11) has its phase given by

,P(f) = -4 sMf + 0 , (2.12)

where 0 is any constant. We will assume from now on (without any loss of generality) that

0 = 0. Thus, for a given R, the conventional phae-only filter e does indeed give

the highest possible SNR.

Now the SNR in Eq. (2.11) can be further optimized by properly selecting the

support R. Unfortunately, Finding the optimal support R opt is in general a fairly difficult

task. Nevertheless, some characterizations of Ropt can be provided. This will be the object

of focus of the next section.

2.3.2. Optimal Support Characterization

First, for OPOF, we must have

~opt C S , (2.13)

otherwise, we can easily see from Eq. (2.2) that the denominator will increase with no

increase in the numerator. Before we present two other results, we list some useful

definitions.

" A region R8 is said to be symmetric iff

VfE V, -f (2.14)

* A region Ra is said to be anti-symmetric iff

12



vf E a, _f 4 a (2.15)

* We define the mirror image of an anti-symmetric region Ra (denoted £a) by

Ra- -{f: -f E a}. (2.16)

Note that R a- is itself anti-symmetric.

* Any region R can be partitioned as

R = R 8 U a , (2.17)

where, V and ,Za (disjoint) are given by

RS = {fE R : -fE )}, (2.18)

and

£a = R \ )Z, (2.19)

In the above, the symbol "\" denotes the set difference operation.

Proposition 1: Ropt is even symmetric for real reference images.

Proof: Recall that we want to find R that maximizes the SNR in Eq.
(2.11). Then, the optimal support Ro.t can be decomposed as

opt Opt opt (2.20)

Let us now assume that

'Rat 34 0 . (2.21)

There are two cases:

1. Kp t = 0. In this case, it is not difficult to see that by using

V .a U R we double the SNR, i.e.,
Opt op3

13



SNR(-R) 2 SNR(Ropt). Absurd. (2.22)

In the above, we made use of the fact that

IS(-f) = IS(f)I (2.23)

which is a direct consequence of the assumption that s(x) is real.

2. R pt 3 0. The objective now is to show that by using

R a- (2.24)
ot opt

we get higher SNR, resulting in an absurd situation. Let

f ,J IS(f)if, (2.25)

~= Ia IS~fIdf,(2.25)
opt

) /a IS(f)I df (2.26)
opt

(f) df(2.27)

Popt

= a P(f) df . (2.28)
R opt

Using Eqs. (2.25)-(2.28), Eq. (2.24), and Eq. (2.23) in Eq. (2.11), we get

SNR(Ropt) - SNR( R')

(, +)3)2 (c + 2/?) 2

a2_2- 1 - 2a,q - 2/02(1 + )
(? =( +2)< 0O. (2.29)(7+ )(rl + 2 )

Absurd.

The above strict inequality comes from the fact that

14



a -22/3n -2011 < 0 , (2.30)

and the fact that"

0 2(q + ) > 0. (2.31)

Hence, in conclusion, our assumption in Eq. (2.21) cannot be true and R

must be symmetric *

Proposition 2: For white noise,

R opt = { f : IS(f)I > e,, (2.32)

where, Eo is a positive constant (to be determined) that depends on IS(fMt and

the white noise level.

Proof: Assuming white noise, the above result follows directly from the
observation that to maximize the SNR, we want the frequencies with the largest
magnitudes to be included in the passband first. This is exactly achieved by
comparing IS(f) to some threshold and rejecting all those frequencies with

magnitudes below the threshold"'. However, there is a subtle issue that needs to
be addressed. Let us denote by S the set

"Note that 6 is non-zero from the assumption given in Eq. (2.21).

"'For example, for all signal spectra for which the OPOF turns out to be a low pass filter
(examples of such spectra will follow in next sections) it can easily be seen that the optimal
passband is given by the set of all those frequencies at which the magnitude of S(fl is greater than
E0 given by

to S(Wh)I ' (2.33)

where Wh is the optimal cut-off frequency of the OPOF. Unfortunately, no other information can

be given about (of and in general, it depends on S(f) and the white noise level. Actually, Eq. (2.33)

points out that finding the optimal threshold ( in general involves the same level of difficulty as

finding the optimal cut-off frequency (namely solving a transcendental equation, as will be seen
shortly).

15



st - {f: IS(f)I (

then the Lebesgue measure of S, (ji(S,)) as a function of c shows a discontinuity

of the first kind (i.e., a "jump") whenever IS(f) is constant over a region of
non-zero measure. This is illustrated by the example in Figs. 2-1 and 2-2. This
-could cause problems in the sense that if one of the optimal cut-off frequencies
(there could be more than one for the case where the OPOF is a multi pass
filter) lies in the interior of a region (with non-zero measure) over which IS(f)l
is constant, then the optimal support cannot take the form given in Eq. (2.32).
Another way of stating this difficulty is that the sets in Eq. (2.32) cannot
"resolve" those non-zero measure regions over which JS(fJl is constant.

I sm)

SNI

SM

Figure 2-1: H-ypothetical signal spectrum.

A(L S)

C. S

Figure 2-2: Lebesgue measure of S( for above spectrum.

It turns out that the above case is forbidden, i.e., no optimal cut-off
frequency can be in the interior of such a region. This fact can be easily proved.

16



It can be checked that by enlarging the cut-off frequency by an infinitesimal
increment, we get higher SNR. A similar proof will be given in a forthcoming
section 0

While the above results somewhat characterize Ropt' they remain of academic

importance only, since they do not explicitly lead to the optimal region. Later on, we will

introduce numerical techniques based on this characterization to solve this problem.

2.3.3. Analytical Examples

To analytically investigate the effect of proper sup po rt selection on the performance

of the system, we need to make some simplifying assumptions. First, we will assume that

most of the energy of the reference signal lies in the low frequency region of the spectrum.

Second, we will assume the power spectral density of the noise to be much wider than the

spectrum of the reference. With these assumptions, the OPOF turns out to be a low pass

filter (i.e., the optimal region Ropt is a low frequency region). Hence the OPOF is given by

-ro for < (2.35)
H(.f) ----- 1 0 otherwise

.vhere W is the cut-off frequency of the OPOF. Then, the SNR expression given in Eq.

(2.11) can be written explicitly as a function of 1'Vh as

2 [[1 h IS(f)Idfl 2

SNR OPOF Vw.

Where we used the fact that for real signals both IS(f)l and P,,(f) have even symmetry.
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To find the best choice for Uh, we set the derivative of SNRoPoF in Eq. (2.36) with

respect to W to zero. Thus Wh is the solution to the following equation.

oWh~nf !Wls~ n('h

[2 f P(f) dA IS('V,) = (]' S(f)j dA P(W ) (2.37)

To solve Eq. (2.37), let us define the following new functions.

2 F.IV h

PF'(Wh) 9 IV P(f df (2.38)

and

Sf'(hVh) I S(f)I df (2.39)

Then the optimum W h can be obtained as the solution to the following equation.

S '(Vh) = Pn'(Wh) . (2.40)

From a geometrical point of view, this can be done finding the intersection of the curves

S '(Wh) and Pnl'(Wh). In case this equation cannot be solved explicitly (i.e., the functions

S '(Wh) and PFt'(Wh) do not intersect), we must graph the SNR OPOF in Eq. (2.36) as a

function of Wh and choose the Vh yielding the maximum SNR OPOF We now present a

few examples to illustrate the necessity of proper bandwidth selection. Let the noise be

white noise with a power spectral density of N 0 .
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2.3.3.1. Triangular Signal Spectrum

Here we assume that the magnitude of the signal FT is as below.

IS(f)I = { (-1foriA< (2.41)

0 otherwise

Substituting Eq. (2.41) in Eq. (2.36), we see that SNR OPOF (Wh) is given by

SNR OPO(IV) -(1- (2.42)
0 2

It is easy to verify that the SNRoPoF in Eq. (2.42) can be maximized by choosing

2
IV =-w . (2.43)3 8

The resulting maximum SNR from an optimal phase-only filter is given by

16 w
SNR OPOF 27 N o  (2.44)

If we use the full signal bandwidth 14' for the filter (as is done for the conventional POF),

the resulting SNR is given by

21V w I.ll
8 s8

SNR POF =- (I ---- ) - 0 (2.45)PF-N 0  2W8  2N%

It is obvious from Eq. (2.44) and Eq. (2.45) that the conventional POF yields smaller SNR

values than our optimal POF. Of course, both these SNRs are lower than that obtained

from the classical matched filter.
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2 (1 f 2 2W
SNR Msf Wodf 3 (2.46)

This example clearly illustrates that

SNR POF - SNR OPOF - SNR MSF (2.47)

More exactly, the conventional POF yields a SNR 1.25 dB lower than that of the classical

MF whereas our OPOF yields a SNR only 0.51 dB lower than that of the classical matched

filter.

2.3.3.2. Cosinusoidal Signal Spectrum

In this example, the magnitude of the signal FT is given by

7Tf
cos (-) for If I < IV

IS(f) I= 1 - (2.48)

0 otherwise

Substituting Eq. (2.48) in Eq. (2.40) and simplifying, we obtain the following

transcendental equation in Vh.

wh 1 7, A
* - tan [- - (2.49)IV r 2 V

While this transcendental equation has many possible solutions, we require that
Wh

0 < 1 1. By numerically solving Eq. (2.49), we determined that the solution is
8

approximately given by

Wh - 0.742 I'V (2.50)
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W

Substituting Eq. (2.50) in Eq. (2.36), we found that SNRoPOF equals 0.9226 (-).
W0

IV8

The SNRMsF can be shown to be (-). The conventional POF uses the full bandwidth
0

8 -
IV and the resulting SNR is (.) 7). Thus, the conventional POF has a SNR

r 0

0.912 dB below that of the classical matched filter whereas the OPOF yields a SNR only

0.35 dB bIow that of the classical matched filter.

2.3.3.3. Sinc Signal Spectrum

The previous two examples involved only rcatively small improvements in the SNRs.

In this subsection, we show a more dramatic example. The magnitude of the signal FT is

given by iv

I S(f)i = Sinc (c7h , (2.51)

where Tis a known constant. Such a magnitude Fourier transform occurs when the signal

is a rectangle function that is zero outside -T1/2 < x < T/2. The SNRMSF for this

signal can be easily shown to be

1 001
SNR MSF ] Sine NOT (2.52)

0 0

For the conventional POF, the I H(f) I is I for all frequencies because IS(f) I has infinite

bandwidth (even though, in practice, any filter will be band limited) and from Eq. (9), we

obtain

sin (7r x)
ivHere, we define Sinc(x) as
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f00

(] I Sinc (T I df)2

SNR POF = =0. (2.53)

f No df

The W defining the OPOF can be obtained by evaluating SNRo0 oF in Eq. (2.36)

as a function of W h and finding the VVh that maximizes it. This evaluation was done

numerically and after some approximations, it was found that W/I-- 0.6855/T yields the

highest output SNR. For this choice of th, the resulting SNRoPoF is seen to be

2[ j w h ISinc (fThdf 12 0.8245

SNR OPOF = - NT (2.54)
No f°  df 0

In the above SNR evaluation as well as in the solution of Wh, we made use of the

following series expansion 2 0

f W/1 00 (-)+I( T Nh) i - (

o Sinc(Tf)df = r-E (2i-1) (2i-1)! (2.55)i=1

Comparing the SNRs in Eqs. (2.52) and (2.54), we see that the OPOF yields an SNR that

is only 0.838 dB below that of the matched filter. On the other hand, the conventional

POF is overwhelmed by the white noise because of its all-pass nature and yields a zero

SNR.

We realize that it is unwise to allow any POF to have an infinite bandwidth.

However, this example clearly brings out two points. Firstly, it shows that proper

selection of POF bandwidth is essential for obtaining a reasonable SNR. Secondly, it

shows that one is trading off SNR against sharpness of correlation peaks. For example,
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when the conventional POF has infinite bandwidth, it will yield the sharpest correlation

peaks, but with zero SNRs.

2.3.4. Comment on Zero-mean Noise Assumption

In our formulation of the detection problem, we have made the assumption that the

noise corrupting the input has zero mean. Even though this assumption may be valid in a

communication theory context, it may not be so in an optical pattern recogmition context,

because the imaging devices used to display the input are usually intensity sensitive. As a

result, the additive noise n(x) we deal with in an optical correlator has a positive mean

mn. If in is known a priori, then its contribution to the filter output (at the origin) is a

known deterministic value given by

Y.n (0) = nz, H(O), (2.56)
it

where, H(0) is the transfer function of the filter evaluated at the origin. Hence, if we

subtract this value from the total output at the origin, we would cancel the effect of the

non-zero mean of the noise. Thus, if we redefine the SNR as

IE{ [y(O) - n,,H(O) I / signal present } 12
SNR -- va,'{y(O)} (2.57)

we get exactly the expression in Eq. (2.2), and we can proceed as before. In Eq. (2.57), y(O)

denotes the output value at the origin, E{a/c} denotes the expected value of a

conditioned on c, and var{a} denotes the variance of a.

If, however, rn,, is not known a priori, we cannot cancel its effect by a simple

subtraction. Instead, let us rewrite n(x) as the sum of two components: A realization from

a zero mean random process no(x) and the mean value mn, i.e.,

n(x) = no(x) + in . (2.58)

Similarly, we rewrite s(x) as a zero-mean signal added to a positive DC bias, i.e.,
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S(x) = so(X) + 77., (2.59)

We can see from Eq. (2.58) that

Fn(f) _ P (f) + ,nn 6(f) , (2.60)
0

where, 6(f) is a delta function. Hence, the SNR expression is given by

__ 1E{y(o)/ signal present }!2
va,'{y(O)}

S f S(f)H(f) df + +(mt + rn8)H(o) 12
cc (2.61)

f P0 (f) IH(f)12 df + rn2 IH(O)12

If we assume

H(O) = 0, (2.62)

then the SNR expression in Eq. (2.61) reduces to Eq. (2.2) with S0 (f) and Pn () replacing
0

S(f) and P(f), respectively. Eq. (2.62) expresses the well known practice of introducing a

DC block at the frequency plane of an optical correlator. Notice that the filter that

optimizes Eq. (2.61) subject to the condition given in Eq. (2.62), is given by

So(f)

Hopt(f) = p (fM (2.63)

0

(the condition that H(0) = 0 is satisfied from the fact that S0(0) =- 0). Once again, we

observe from Eq. (2.63) that for the case of white noise, optimal (among all filters with

zero DC value) filtering is equivalent to a "slightly modified" correlation operation. Hence,

the fact that the additive white noise has a non-zero mean does not make the optical

correlator lose its optimality, since we just argued that a correlator with a DC block is the

best among all filters with DC blocks.
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In conclusion, the non-zero mean of the input noise can, v. ithout loss of generality, be

ignored by a small modification of the output value. This modification could be performed

by a direct subtraction from the output of the contribution due to the noise mean (if it is

known a priori), or by introducing a DC block in the frequency plane of the correlator.

This second approach is robust to uncertainties in the first order characteristics of the

noise.

2.4. Efficient Algorithm for OPOFs

2.4.1. Algorithm

In this section, we provide an efficient numerical procedure for finding the support of

the OPOF when the noise is white. Then, the denominator in Eq. (2.11) depends only on

the area of the support and not on which exact spatial frequencies are included in this

support. Thus, for a given size of the support, we want to include those spatial frequencies

that maximize the numerator of Eq. (2.11). To do this on a digital computer, we use the

discrete notation. To accomplish this, we reorder the samples of the signal Fourier

transform as below.

I S(1)I >- IS(2)I > _IS(d)I , (2.64)

where d is the number of samples in the signal discrete Fourier transform (DFT) S(k). Let

K denote the number of pixels in the support. By choosing the K pixels corresponding to

the first K signal DFT values in Eq. (2.64), we will maximize the resulting SNR for that

choice of K. The corresponding SNR is given by

Af I

SNR(K)- = [Z I S(k)Ij , (2.65)

k=1

where Af is the integration step size, and can be ignored in the optimization procedure.

We numerically evaluate SNR (K) for all possible choices of K and select the one that
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maximizes it. Notice that without the ordering scheine, for each \':diu. (A N wC 1111"t iII

all possible supports consisting of K pixels. This is impossible evcn for sinall I vtlues.

2.4.2. -Simulation Results

In this section, we investigate the comparative performance of the classical matched

filter (MSF), the conventional phase-only filter (POF) and the optimal phase-only filter

(OPOF) with the help of realistic 2-D images.

2.4.2.1. Tank Image

In this simulation example, we used the 32X32 tank image shown in Figure 2-3. All

Figure 2-3: Tank image used.

three types of correlations (the MSF, the POF and the OPOF) were done with the help of

FFTs of size 64X64. The original 32X32 images (both the reference images and the

observed images) were converted to 64X64 images by padding them with zeros. To

investigate tlhe effects of various amounts of noise, we added zero-mean, Gaussian, white2I
noise of variance a 2 to these images. Sample images obtained by adding noise realizations

of variances 1, 2, 5, 10, 50, 100, 200, 500 and 1000 are shown in Figs. 2-4(a) through

2-4(i), respectively. It was seen that the uncorrupted image in Fig. 2-3 has an average

pixel energy of 119.7; thus, a noise variance of 100 represents an input SNR of 10 log 0

(119.7/100) -=- 0.781 dB.

The magnitude of the 2-D Fourier transform of the image in Fig. 2-3 is shown in Fig.
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Figure 2-4: Noisy tank images.
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Figure 2-5: Magnitude of the FT of tank image.

2-5. Because of the limited dynamic range of the display device, we do not see the high

dynamic range of this FT magnitude (maximum value of 10.10, ninimum value close to

zero) in this figure. This high dynamic range is a direct consequence of the nonzero

average value in the original image We avoided the deliberate introduction of low-

frequency stops in the filter plane (usually done in optical matched filtering) since it

interferes with the OPOF optimality by introducing an ad-hoc intermediate step. The

phase of the resulting POF is shown in Fig. 2-6 where darker regions represent phases close

- ' .

, A,"..r...'

Figure 2-6: Phase of POF for tank image.

to -r and brighter regions represent phases close to +ir. The OPOF has the same phase

characteristic as the one shown in Fig. 2-6 except that its magnitude is nonzero only over a

smaller frequency region. We numerically determined the support of this OPOF to
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maxinize the ou tput SN. The reCSul tinig .support, is shown ili Fig. 2-7. li i- t i I lpil

to see that the O1OF allows only those regions where the image FT friagritiidc is Very

large.

Figure 2-7: Optimal support for tank image.

The SNRs obtained with the three different filters were evaluated by repeating the

above cross-correlation experiments with 100 different noise realizations. The average

value of the output correlation at the origir. as well as its variance were used in estimating

the SNR. The output SNR as a function of the input SNR (over the range of -10 dB to

+20 dB) is shown in Fig. 2-8 for the three different filters. The SNR relation given in Eq.

(2.47) is illustrated very clearly in Fig. 2-8. We see from this figure that the matched filter

yields a processing gain (output SNR in dB minus input SNR in dB) of about 30 dB, which

is the expected SNR improvement for an image with about 1024 pixels. The conventional

POF yields a processing gain (PG) of 25 dB whereas the optimal POF yields a PG of about

28.5 dB. Thus, use of the OPOF improves the SNIR by about 3.5 dB compared to that

obtained by the conventional POF. This improvement is quite significant.

It is easily seen that the OPOF has a smaller bandwidth compared to the

conventional POF. Thus, we can expect that the correlation peaks obtained from the

OPOF to be broader. To illustrate this, we include sample cross-correlations obtained

from the three methods in Figs. 2-9 and 2-10. Figs. 2-9(a), 2-9(b), and 2-9(c) show the

three output correlations when the input noise is of variance 100 (input SNR is 0.78 dB).
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Figure 2-8: Output SNR (vs) input SNR for tank image.

Similarly, Figs. 2-10(a), 2-10(b), and 2-10(c) show the output correlations when the input

noise is of variance 1000 (input SNR is -9.22 dB). We see from Fig. 2-9 that the

conventional POF yields the sharpest correlation peak whereas the OPOF yields broad

correlation peaks. The sidelobe structure is seen to be the most oscillatory for the

conventional POF and less oscillatory for both the OPOF and the classical matched filter.

This behavior is much more pronounced in Fig. 2-10 where the input noise has a variance

ten times as high as the one in Fig. 2-9.

2.4.2.2. Pliers Image

In this second simulation example, we used the 32X32 pliers image shown in Fig.

2-11. This image had average pixel energy of 120.68. We carried out the same simulation

steps described above (i.e., same FFT size, noise variances, number of realizations...,etc.).

Fig. 2-12 shows the magnitude of the Fourier transform of the image in Fig. 2-11. As can

be observed, the vertically elongated pliers image yields a horizontally elongated Fourier

transform. The negative of the phase of the Fourier transform is shown in Fig. 2-13 The
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Figure 2-9:- Output correlation oftank image with MSF, POF, and OPOP'
when input noise is of variance 100.
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Figure 2-10: Output correlation of tank image with MSF, POF, and OPOF
when input noise is of variance 1000.
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Figure 2-11: Pliers image used.

Figure 2-12: Magnitude of the FT of pliers image.

Figure 2-13: Phase of POF for pliers image.

numerically found optimal support for the pliers image is shown in Fig. 2-14. It consists of

311 pixcls that are "ON". It is intersting to observe that the support for this case is a
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I ult, i-pass regl ol. Ihis is C(o l hl', ly Io the IlltlitIV(e i(1(.:t of iillig ; \V'w 1 , ,,I , 

red uction in images. Nevertheless, it is seen that Lhc support. is still emphasizing Ilrs,

regions in frequency (including DC) where most of the energy in the image lies. Tlhi.- s

direct consequence of the fact that we are optimizing the signal-to-noise ratio, since ti,.

SNR increases with the amount of signal energy reaching the output. However, as we will

see shortly, in a classification problem the frequencies that carry most of the energy ill the

filter may not coincide with the frequencies that carry most of the discriminatory

information. Hence, we expect in such cases that the optimal support will exhibit all even

more "scattered" behavior.

Figure 2-14: Optimal support for pliers image.

We computed estimates of output SNRs with all three filters (MSF, POF, and

OPOF) as we did in the previous simulation example. These output SNRs are plotted as a

function of input SNRs in Fig. 2-15. This figure shows the same hierarchy observed earlier

in Fig. 2-8. The Matched filter yielded the highest SNR with a processing gain (PG) of

about 30.5 db. Next, comes the OPOF with a PG 2 db below that of the matched filter.

Finally, the POF comes last with a PG 1.5 db below that of the OPOF. Hence, optimizing

the pass band resulted in improving the output SNR by about 1.5 dB. Even though this is

less tLan the 3.5 dB improvement obtained ea:lier with the tank image, it is still

considered significant.

The image examples used in the above simulations clearly illustrate the superiority of

the OPOF over the conventional POF when the output SNR is the criterion of interest.
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Figure 2-15: Output SNR (vs) input SNR for pliers image.

2.4.3. Window Approximation to Support

Realistic images have most of their energy lying in the low frequency region of the

spectrum. This fact often allows filter designers to use low frequency (square) windows to

reject the corruptive high frequency components. Hence, our support optimization might be

initially taken to fall in the realm of the well known practice of using a low pass window

to cut-off high frequency noise. However, the above simulation examples clearly illustrate

that there is a definite structure in the solved for supports. This structure could not be

predicted ahead of time, and leads to SNR values higher than those obtained using any

other window function.

Nevertheless, the square type of windows is easier to implement in an optical

correlatorix than the rather arbitrarily shaped supports shown above. Hence, there is a

iXThis is particularly true for optical correlators based on the grid structured Spatial Light

Modulators (SLMs) which will be introduced in the coming chapters.
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trade-off between the ease of filter implementation and the resulting SNR. It seems

therefore legitimate to ask: If one constrains the sui)port to be square, how much SNR do

we give up?

We addressed this problem numerically using the same two images. We assumed

white noise in all cases. To find the best square window, we first start with a 3X3

window centered around the origin and numerically compute the resulting SNR using the

discrete version of the SNR expression given in Eq. (2.2). Then, we enlarge the window to

5X5 and find the corresponding SNR. We kee l) enlarging the window (while ensuring that

it remains centered around the origin) and each time we compute the corresponding SNR.

The best square window is the one that leads to the highest SNR.

We first used the tank image shown in Fig. 2-3. The best square window was found

to be of size 7X7, hence leading to 19 pixels that are ,ON,. The SNR corresponding to

this window was numerically computed and fouild to be 1.5 dB below that resulting from

the optimal support presented earlier (which had 59 pixels "ON"). This drop in SNR was

verified by running the same simulations presented earlier, wherein the tank image is

corrupted by the same type of noise with the same variance increments (1, 2, 5, 10, 50,

100, 200, 500, 1000). With each variance value, the output SNR with all four available

filters, namely MSF, POF, OPOF, and POF w (denoting the "window" filter) is estimated

by averaging over 100 noise realizations. Figure 2-16 plots these output SNRs as a

function of input SNRs. It confirms that SNRPoF is about 1.5 dB below SNROPOF
w

which is about 1.3 dB below SNRNISF. At the bottom of the hierarchy, comes the POF

with an output SNR approximately 2.5 dB below that of POF w .

This procedure was performed again on the pliers image. The best square window

size was found to occupy the whole array (i.e., 64X64). Hence, POFW is identically equal

to POF in this case. Thus, imposing the square shape on the support incurred a drop of

about 1.8 dB in SNR relative to the OPOF. The simulation results were already presented

in Fig. 2-15.
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Figure 2-16: Output SNR (vs) input SNR for MSF, POF, OPOF, and POF

using tank image.

The above discussion points o,(, that the price of using (the easier to implement)

square window can be as high as 1.8 dB loss in SNR. It is up to the designer to judge if

this loss is worth the advantages acquired in practice. It is worthwhile also pointing out

that this window approximation makes sense only when most of the energy in the filter lies

at low frequencies. This however may not always be true. This is especially true for two

class problems in which the frequencies of interest shift to the high frequency range since it

is believed to contain most of the discriminatory information.

2.5. Very Effici-nt Sub-optimal Technique for OPOF Design

In this section, we develop a very efficient sub-optimal algorithm for support

optimization in OPOFs. However, before presenting the new algorithm, a subtle point has

to be addressed. The efficiency of the new algorithm will be measured with respect t the

"old" one. Hence, if the latter is not as efficient as it can be, our evaluation of the new
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algorithm will be biased. Therefore, the first thing to do is to "polish" the old algorithm

and ensure that it is as close as possible to its most efficient form.

2.5.1. Enhancing the Old Algorithm

Examination of that algorithm (Section 2.3) reveals that the most time consuming

part is the sorting procedure. We have been using the Selection Sort21 procedure, which,

like the Quick Sort, Merge Sort, Shell Sort, and Bubble Sort has a worst case number of

iterations of the order of N 2 , where N is the number of entries being sorted. A brief

literature search showed that the most efficient sorting algorithm known so far is the Heap

Sort2 2. This algorithm has a worst case number of iterations of the order of Nlog2,(N).

Essentially, the numbers to be sorted are not regarded as an array, but as a binary tree.

The idea is to give this tree a specific structure (called a Heap) wherein every "father"

node is greater than or equal to its "son" nodes. 1. turns out that to place each number in

its right position, one only needs to perform a number of comparisons that is, in the worst

case, proportional to the number of "levels" (equal to log92(N)) in the heap. This is where

the efficiency of this algorithm comes from.

We used the heap sort in our old algorithm and noticed a substantial reduction in

the computing time. For example, to compute the optimal support for the 32X32 image

shown earlier (Fig. 2-3) on which a 64X64 FFT was performed, it used tu take around 293

seconds on a VAX 11/750. Using the heap sort, this number was reduced to just over 10

sec. When using a 128X 128 FFT size, computing the optimal support used to take about

11630 seconds. With the heap sort, this number was reduced to only 65 seconds. Even

though we cannot claim our old algorithm is now as efficient as it can get since other fine

enhancements can still be applied , we feel it is very close to its most efficient form.

Hence, we now think it is fair to measure the performance of the algorithm we are about

to introduce to our improved old algorithm.
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2.5.2. Analysis

Let us recall that in support optimization, our objective is to find Kopt that

optimizes the SNR given by

K[: 1IS(i)I1]2
SNR(K) K (2.66)

where in Eq. (2.66) we assume the numbers IS(i)I (i = 1, ... , d) have been sorted in

descending order. The following proposition provides some insight about the optimal

support and should help iII the above optimization.

Proposition 3: If two or more pixels have equal magnitudes, either all or
none of them are included in the optimal support.

Proof: It is sufficient to prove the above result for two pixels only. The
case of three or more pixels easily follows by deduction. Assume
IS(Ko) = JS(Ko+i)l for some K_ > 2 (K o = 1 is a trivial case proved

easily). There are two cases. The first, is that

SNR(K ) > SNR(Ko-1) . (2.67)

We now propose to show that in this case SNR(Ko+I) > SNR(Ko), hence

implying to include both KO, and K+1 in the optimal support. Let

K
0

= 1 IS(i) • (2.68)
i=l

Using Eq. (2.68) in Eq. (2.66), we get
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SNR(Ko+ 1) - SNR(Ko)

(0 + S(K)I) 2

K ° + 1 K o

1

[K°(32 + IS(°)I2 + 231S(Ko)I) - (Ko + 1))i2]

S( [Ko(IS(Ko)j2 + 2,31S(K 0 )l) - 82] . (2.69)

Using (2.66), (2.67), and (2.68), we obtain

SNR(Ko) - SNR(Ko- 1) > 0

2 (3 - I S(Ko) 1)2

-- > 0
K o  ( -)

1
K I(Ko-1) [(Ko-1)02 - Ko(32 + IS(K o)12 - 231S(Ko)l) > 0

--22 + Ko(21S(Ko)I - IS(Ko)12  0

= Ko(203S(Ko)l + IS(K0 ) 2 )- 62 > 0 (2.70)

Eqs. (2.69) and (2.70) together imply the sought after result.
Now, the second case is that

SNR(Ko) < SNR(Ko-1). (2.71)

In this case, it is not difficult to sce"1 that

Kopf < K °  or Kof> Ko +1, (2.72)

indicating that either both pixels K 0 and K 0 + 1 or none of the two are

included in the optimal support *

v"Note that for a "cluster* of three or more pixels having the same magnitude, Kop t cannot be

in the "interior* of this cluster by the argument given in case 1.
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The above proposition suggests an interesting idea. Suppose we quantize

JS(i)j, i =1,..., d into N levels. Then, we do not have to compute the SNR for all d

pixels. It is enough to compute the SNR for the N quantization levels only, knowing from

the above proposition that pixels with the same quantization level will either all or none be

included in the optimal support. Hence, we are ready to present a new, very efficient sub-

optimal algorithm for POF support selection. The efficiency of this new algorithm stems

from the fact that it is, in principle, independent of the number of pixels and depends

primarily on the number of quantization levels which is expected to be smaller than the

number of pixels (>4000) for practical cases. The sub-optimality of this new algorithm is

due to the approximation that all pixel magnitudes falling in the same quantization level

are equal. This approximation can be made more accurate by increasing N (the number of

quantizations).

2.5.3. Algorithm

Below, we list the steps of our new algorithm.

* STEP 1: /* This normalizes and initializes variables*/

Normalize IS( I )1, I=1,...,d.
LEVEL(I)-0, I=1,...,(N-1).
TAG(T)=O, I=1,...,d.
COUNT=O; SUM=0; SNR=-0; 1 0.

" STEP 2: /*This assigns levels to pixels*/

1=1+1
J=IS(I )I * (N-i).
IF J 3 0, LEVEL(J)=LEVEL(J)+I.
TAG(I)-=J
IF I<d, GO TO STEP 2.

I=N- 1

" STEP 3: /* This gets the optimal level*/

1=1-1

COUNT=COUNT+LEVEL()
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SUM=SUM+LEVEL(I)*I

TEMP=(SUM) 2/COUNT
IF TEMP>SNR, INDEX=I; SNR=TEMP.
IF 1>1 GO TO STEP 3.
1=0.

* STEP 4: /* This gets the optimal support*/

IF TAG(I) > INDEX, INCLUDE I IN SUPPORT.
IF I<d, GO TO STEP 4

* STEP 5: END.

2.5.4. Numerical Results

We have implemented and tested this new algorithm. The results are impressive. For

example, using the same tank image with an FFT of size 64X64 and using N-256 levels,

we obtained in 0.13 seconds the same support we got previously in 10.15 seconds with the

old (improved) algorithm. This is a reduction in CPU time by a factor of 78. As already

mentioned, we expect this factor to increase even further as the number of pixels increase.

To test this, we increased the size of the FFT to 128 X 128 and applied our new algorithm

with N=256. It took 0.5 seconds to find a support made of 235 pixels to yield a

numerically computed SNR (assuming unit variance white noise) of 76.46116 (=18.834409

dB). Using the improved old algorithm, it took 64.6 seconds to find the optimal support

consisting of 237 pixels to yield a numerically computed SNR of 76.46427 (-18.834585

dB). The new algorithm has now achieved a time reduction factor of almost 130! There is a

small price though. We have giver, up about 0.00018 dB in SNR. In case this loss does not

seem negligeable enough, one can slightly increase N to reduce the inaccuracy in the new

algorithm. For example, by increasing N from 256 to 400, we obtained the optimal support

exactly (i.e., 237 pixels) in practically the same CPU time (0.5 second).

A comment is due at this point. It seems that as the number of pixels further

increases, this reduction factor increases even further. We increased the FFT size to
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256X256. The old algorithm took 304.33 seconds to generate the optimal support (931

pixels) to yield a numerically computed optimal SNR of 76.422375 (=18.832205 dB).

Applying the new algorithm with N=256, it took 2.88 seconds to find a support made up

of 921 pixels to yield an SNR of 76.419975 (-18.832069 dB). This results in a reduction

factor of about 106 with a loss in SNR of about 0.00014. Increasing N to 1000 achieved an

exact solution in 2.93 seconds (a time reduction of about 104). Thus, the time reduction

factor has dropped from 130 to 104 as we quadrupled the number of pixels. We believe this

behavior is due to the overhead computations (such as assignments) that seems to "take

over" as the number of pixels increase, hence causing the time reducti,-i factor to exhibit a

"peak". Notice also how the number of quantization levels necessary to achieve exact

results slowly increases with the number of pixels, while the computation time difference

increases very slowly. This may suggest an enhancement to the new algorithm by

adaptively changing N (eg. N- a slow function of d).

Before moving to the next section, a last assessement of the new algorithm is due. It

seems that this newly proposed algorithm has provided us with tremendous savings in

computer time (about two orders of magnitude) at the expense of a very small loss in SNR

(less than 2 X 10- 4 dB). As argued above, we can even get exact results with a saving of at

least one order of magnitude in computer time (this being a rather conservative number).

What did we give up? The answer is nothing. The only other point that could be a price

is the memory requirement of the algorithm. It turns out that both the new and old

algorithms use the same memory storage, since the d dimensional array that is used in the

old algorithm for the sorting procedure is used in the new algorithm for tagging the pixels

(i.e., to which level each pixel belongs). It is worthwhile mentioning that all the CPU times

presented above do not take into account the time to compute the FFT, get the magnitude

of the pixels and normalize them, and the input/output operations. All these computations

are common to both algorithms and strictly speaking do not constitute part of the

algorithms themselves.
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2.6. Distortion Sensitivity of OPOF

As mentioned earlier, one of the main problems associated with POFs is their

sensitivity to input distortion. This problem seems to be related to the implicit high

frequency emphasis described previously. In this section, we propose to investigate the

distortion sensitivity of POFs relative to the OPOF and Matched filter using computer

simulations. In the first run, we used a data base consisting of distorted versions of the

tank image shown in Fig. 2-3. The distortion we deal with here is 3-D rotation. All images

are pictures of the tank viewed along a "cone with 10' degree rotation increments. The

tank is viewed with a depression angle of 700 with respect to ground. We computed

estimates of output SNRs for the first 12 images (corresponding to rotation angles of 0 * to

110°) as follows. First, we corrupt each image with independent zero-mean noise having a

variance of 50 (this corresponds to an average input SNR of about 3 dB). Next, the

corrupted image is zero padded and a 64 X 64 FFT is performed. This is used to obtain the

correlation of the noisy input with all three filters (MSF, POF, and OPOF), and the value

at the origin is registered. We repeat this process 100 times and find the average value of

the output at the origin along with its variance. The ratio of the first quantity squared to

the second gives an estimate of the SNR. Figure 2-17 shows the output SNRs of the three

filters as a function of rotation in degree. It can be observed that the POF is the most

sensitive filter to distortion in output SNR. The MSF and OPOF, on the other hand,

exhibit a more tolerant behavior than POF. It is worthwhile to point out that the MSF in

this case showed more tolerance to input rotation than has been previously reported23 .

The extreme sensitivity reported about MSFs 2 3 was for the case where the filter is

optically recorded on a holographic plate, hence amplitude modulated on a high frequency

carrier. The presence of this carrier causes the slightest mismatch between the input and

the reference signals to considerably affect their correlations. Th,,is is not the case in our

simulations wherein the MSF is simply stored as a complex array.

We further tested the relative sensitivity of POF with respect to MSF and OPOF on
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Figure 2-17: SNR (vs) input rotation for tank image for MSF, POF, and OPOF.

the pliers image. This time, the distortion consists of in-plane rotated versions of the

image. We performed exactly the same simulation steps as described above. Fig. 2-18

summarizes our results. It essentially confirms the same conclusions drawn above about

the sensitivity of POF. Note that in this case the OPOF and MSF exhibit more sensitivity

than in the previous case. Nevertheless, their output SNR did not degrade as sharply as

that of the POF. This is especially noticeable for input rotations between 0 and 30 degrees.

2.7. Two-class Problem

In a two-class discrimination problem (also referred to as generalized detection

problem 4 ), we have two hypotheses

I-I r(x) =s,(x) + n(x),

and

H 2 : r(x) s 2 (x) + n(x) , (2.73)
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Figure 2-18: SNR (vs) input rotation for pliers image for MSF, POP, and OPOF.

where, r(x) denotes the observed (or received) signal, sl(x) and s2 (x) denote the two

reference signal we deal with, and n(x) a realization from a zero-mean random process

with power spectral density Pn(f). The objective is to use the observation r(x) and,

optimally, decide on which signal is present at the input, i.e., optimally discriminate

between st(x) and s2 (x). For this purpose, we choose the filter transfer function It(f) to

maximize the SNR, now defined in its general context as

IE{y(O)/ H 1} - E{y(O)/ H 2}12

SNR . - varfy(O)/ H 1} (2.74)

Eq. (2.74) can be written as
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fjS,(f)H(f df -jfq,(f)H(A df 1

SNR -

4 P,j(f)H(f)2 df

If S'(f)H(f)df 2
(2.75)

f P(f)lg(f)1
2 df

where,

S'(f) = S1(f - . (2.76)

It can be seen from Eq. (2.75) that the SNR expression in this generalized context is

identical to the SNR expression given in Eq. (2.2), except that the reference signal s(x) in

Eq. (2.2) is now replaced by the difference of the reference signals s'(x) = S1 (X) - 8,(x).

Hence, we expect all our earlier results to hold by using s'(x) as our "reference" signal.

Thus,

St*(f) (S (f)- S 2  7)7

Hopt(f ) = a pn(f - p () (2.77)

Likewise, the OPOF is given by (as in Eq. (2.7))

HOPOF () = IR(f) e (2.78)

where -P is the phase of SI(f) - S2(f) and "opt is the optimal support of the OPOF.

Hence, all the techniques of OPOF design presented earlier can be applied in this context

by using sl(x) = S1 (x) - s2 (x) for our reference signal. In the following section, we present

some computer simulations dealing with a 2-class problem.
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2.7.1. Computer Simulations

We provide here the results of the computer simulation-. t w,er. ;in,,(l im

discriminating between the tank inage shown in Fig. 2-3 and the Armored Person lael

Carrier (APC) image shown in Fig. 2-19. Both images are 32X32 gray level with ixels

ranging in intensity from 0 to about 60. To construct the matched filter and PO , we

Figure 2-19: APC image used in the simulations.

generated a third "image" by subtracting the APC image from the tank. This image was

then zero padded and a 64X64 FFT was performed. Fig. 2-20 shows the magnitude of the

resulting Fourier transform. It can be seen that it is more "scattered" than the magnitude

Figure 2-20: Magnitude of FT for difference between tank and APC.

of the FT for the tank image alone (shown in Fig. 2-5). The DC term has now dropped

from about 4044 to about 1826. The dominance of the low frequency components has now

decreased. This result agrees with the intuitive idea that discriminatory information lies
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of the l'Ol' (and OPOF), and lFig. 2-22 shows the optimal support generated by omi

algorithm. It has 1073 pixels "ON". It is interesting to observe that the optimal support

now has a clear multiband structure, and that it is no longer emphasizing only low

frequency components.

Figure 2-21: Phase of POF for tank (vs) APC.

Figure 2-22: Optimal support for tank (vs) APC.

To obtain estimates of output SNRs, we corrupt both the tank and APC with

independent noise (with variance 1, 2, 5, 10, 50, 100, 200, 500, and 1000). The corrupted

images are then zero padded to 64 by 64 and the output correlation (at the origin) of both

the tank and APC with all three filters (MSF, POF, and OPOF) is individually recorded.

We repeat this step 100 times for each variance. The output SNR corresponding to each

XlThis can also be explained by the fact that since both tank and APC images are low frequency

signals, taking their difference will cause the common components (namely DC and low frequency)
to somewhat cancel out.
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APC, taking their difcrence aqu red mi1d dividing it. by the varialce of either output (both

variances should be equal). [-'1-. 2-23 ulnmarizes our restilts. It can be s- ', oce again,

that tie MSIF yields the highest. SN? (%\1ith '. PG of about 30.2 dB). NCxt comes the OPOF

with 2 d1B less SNR (with a PG of about 28.3 dB). Finally, the POF is I dB below the

OPOF (the PG is about 27.3 dB). Thus, support optimization has provided us with a gain

in SNR of I dB (versus 1.5 for the pliers and .5 dB for the tank).
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Figure 2-23: Output. SNR (vs) input SNR for tank-APC.
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2.8. OPOF With Detector Noise

2.8.1. Problem Formulation

As can be seen from Fig. 2-7, the Ol'OF has a much smaller support than the POF,

and this will undoubtedly cause a deerea-se in light throughput. As a matter of fact, for

this particular simulation example, the llorner 2 4 efficiency v i i i for the OPOF and POF was

computed and found to be 70% and 100% respectively. If the goal in proposing phase-only

filters is to seek higher light efficiency, aniongst others, why reduce the filter's support as

was done in OPOFs? Actually, when we derived the OPOF, our only criterion was the

SNR in the correlation plane (prior to detectors) since we implicitly assumed that our

output detectors are ideal. However, a more reasonable approach to this problem is as

follows: Assume that the input image is corrupted by some additive noise, and that the

output detector adds sou-3 noise (assumed to be independent of the input). Then we must

determine the OPOF to minimize the probability of error.

Since we are considering only the detection problem, we will focus on the origin of

the output correlation plane. We model the detector placed at the origin as providing a

gain of a t,,) the magnitude of the light falling on it and introducing detector noise ndet .

For example, if light with magnitude A and phase 0 (i.e., A ej O) falls on the detector, then

its output is given by

Vdrt = X A + ndct (2.79)

where n is a zero-mean random variable with variance 0 dt and is assumed to be

independent of the light falling on the detector' ×.

Viii The Horner Efficiency is defined as the ratio of the energy reaching the output plane to the

energy in the input signal.

IXActually, we expect the noise generated in the detector to depend on the strength of the signal

generated by the incoming light. In other words, we expect this noise to be signal dependent.
Unfortunately, this type of noise is much harder to analyze, and we need to make this simplifying
assumption to be able to perform sorne analytical investigation of the problem.
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Now, the observed signal (at the input of the correlator) consists of just noise (under

hypothesis 1-10) or the reference signal plus noise (under hypothesis FI1), i.e.,

H0 (signal absent ) ,(x) = n(x)

H I (signal present ) r(x) s(x) + n(x), (2.80)

where, n(x) is a realization from a stationary random process with positive mean m and

Power Spectral Density (PSD) P,(f), and s(x) is the reference signal, which also has a

positive DC value. Even stronger, we are assuming that both n(x) and s(x) are non-

negative. This is in agreement with the fact that in practice, 2-D signals (images) are non-

negative. Let y,(O) and Vn(0) denote the output (that is just reaching the detector at the

origin of the correlator plane) due to s(x) and i(x) respectivelyx. Explicitly, we have

p00

y8 (O) = - S(f)H(f) df , (2.81)

and

Y -() = f__n(x)h(-x) dx (2.82)

where h(x) is the impulse response of the filter placed at the frequency plane of the

correlator. Note that y (0) is a random variable with mean

fOC

mY = m H(O) = , h(x) dx (2.83)

and variance

XIn the following, we shall assume that y,(O) and yn(O) are positive. While the solution that will

be presented shortly guarantees that y4 (O) is positive, it does not always yield a positive y11 (O).
However, one can argue from the fact that tizx) is positive and that the p.d.f. of the random
variable y (0) is sharply centered around its (positive) mean, that the probability of y,(O) being

negative is negligeable.
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2 ] P,(f)IH(f) 2 df . (2.84)

Hence, under hypothesis H0 , the light falling on the detector is given by yn(O), and

its output becomes

Vd t = [gn(0)1 + 1dct = X, y,,(O) + nidet (2.85)

The above vdet is a random variable vith mean

E{Vdct/ H0 } X i1yl l 1",J'l(O) (2.86)

and variance

va?{vdCt/ H0 } = X a2 + a (2.87)

On the other hand, under hypothesis H1 , the light falling on the detector is equal to

Ys(O) + yn(O), and its output becomes

Vdet = X IY,(0) + Y,,(0)( + 1dct = y8(O) + > Y,(O) + ndet (2.88)

In this case, Vdt is a random variable with mean

E{Vdet/ H, } = X ys(O) + X ?nH(O) , (2.89)

and variance equal to the variance under hypothesis H0 .

Now, the objective is to find H(f) to maximize the generalized SNR expression

earlier defined in Eq. (2.74) and given by

SNR = (2.90)

yn  det

Using Eq. (2.81) and (2.84) in Eq. (2.90) we get
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-NR 
[0 S(f)H(f) df]

2

+ f-00 P,1(f)IH(f) 2 df0.-0

where, the term Q in the above denotes the quality of the detector and is defined as

X 2

Q = 0 (2.92)

The larger Q, the better the quality of the detector since it implies more efficient and/or

less noisy photo-electronic conversion.

2.8.2. OPOF derivation

In this section, our objective is to design an optimal phase-only filter that maximizes

the SNR given in Eq. (2.91). Thus, we now constrain the filter used in the optical

correlator to be of the form given iii Eq. (2.7), namely

H(f) = 1,(f) e(f) , (2.03)

where P(f) is the sought after phase of the OPOF, and R is its support, yet to be

determined. Using Eq. (2.93) in Eq. (2.91), we get

[J S(f)eA() 
dfl2

SNR = (2.04)

.Q1+ J (f) cf

It can be easily shown that the optimal phase function is given by

' Opt(f) = -0'(f) , (2.95)

resulting in the SNR expression (function of R)
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SNROPOF -jS(f)J dfl (2.96)

+ JP,(f) df

Eq. (2.96) conveys the whole point behind designing OPOFs with detector noise. Even

though the optimal phase in this case is identical to that found when no detector noise was

taken in considerations, the optimal support is directly affected by the quality of the

detector. This can be observed by letting Q approach infinity (i.e., the detector

approaching an ideal one). Then, the SNR expression approaches that already derived

without noise detector (given in Eq. (2.11)). Hence, we expect that as Q approaches

infinity, the optimal support tends to that derived previously. On the other hand, as Q

becomes smaller, the integral in the denominator of Eq. (2.96) becomes more negligeable

and the optimal support R becomes larger. II the limiting case where Q approaches zero,

the optimal support must be as large as possible since the variations of the integral in the

denominator are neglected, and by using the largest support we get the largest possible

numerator (even though the SNR will still tend to zero for practical finite energy spectra).

In other words, what Eq. (2.96) conveys is tiiat in situations where the detector is "good"

we can focus mostly on the effect of the noise at the input and solve for the optimal

support to minimize its effect. However, in situations where the detector is "bad" we

should enlarge the optimal support so that more light reaches the output (hence the signal

obtained at the output of the detector is stronger) and the SNR increases.

It can be once again easily shown that the optimal support is even symmetric for real

reference signals and, for the case of white noise, can be written as the set of those

frequencies at which the magnitude of the signal spectrum is above some threshold (o"

Furthermore, if we assume the OPOF to be a low pass filter, then EQ. (2.96) can be

written as
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SNR OPOF (l'Vh) 2 IV/I IS(f) I df (2.97)

(2Q )-1 + P (f) df

where Wh above refers to the cut-off frequency of the OPOF. To find the optimal 1Wh, we

set the derivative of the SNR in Eq. (2.97) with respect to W hI to zero. Thus, Wh is the

solution to the following transcendental equation.

2 14
I W h PI(f) df + (Q P(VVh)) - '

'F (wh)0

1 f~

fIV) IS(f)l df. (2.98)

Once again, it can be seen that as Q above approaches infinity (i.e., ideal detector), Eq.

(2.98) becomes identical to Eq. (2.37).

2.8.3. Analytical Examples

We now consider some analytical examples to illustrate the design of OPOF support

in the presence of detector noise.

2.8.3.1. Triangular Spectrum

We consider in this example the same triangular signal spectrum given in Eq. (2.41).

We assume the input noise to be white with level N o . Thus, Eq. (2.98) yields

56



N o W + (_QNO)-' = fwh (I -/fWI)

4 2Vh(L - V/,1/1V) + (Q No)-(1 - Il',/I) = wh - w'/(2 W)

(3 QNo/2)14, - (gQNo IV - I) hV, - lV 0

QN o W - 1 + V( Q AT 1) 2 + 4 QN o W +
wh  3. N o(o.)

Some interesting observations can be made from Eq. (2.99).

" Unlike previously, WVh now depends ol all parameters, including No, the noise

PSD level.

" For all non-zero values of Q , No, we have

2
- w < 14' < IV (2.100)3 8 I

" As QN 0 approaches infinity (indicating the detector is approaching an ideal

detector and/or the input noise power is getting larger), Wh approaches

2 W V8/3. This is the cut-off previously derived with no detector noise

considerations. Thus, large values of QiV 0 call for more emphasis on the input

noise.

" As QN 0 approaches zero (indicating the detector is approaching a very "bad"
detector and/or the input noise power is getting smaller), WVh approaches W .

This is the largest cut-off frequency that can be achieved. Thus, low values of
Q AT0 call for more emphasis on the detector noise by asking for a larger

support than it would normally be without detector noise considerations.

" W h monotonically decreases with QAT0 .

The last three observations are summarized by the plot of W h as a function of QN 0

shown in Fig. 2-24.
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2.8.3.2. Cosinusoidal Spectrum

In this example, we consider the cosinusoidal signal spectruin given in Eq. (2.18),

with a white noise of level N 0 . Eq. (2.98) yields

2 1 r i4h

At ,+ (-QA)' =cos (oV/214 )  cos(if

21V
4-* 2141 + (Q )- - tan (irl//2W)

wh ir 1 $;

-+ (2,V QN 0 )- - tan (---) . (2.101)

The above transcendental equation has been numerically solved for various values of

W QN 0 and the resulting solution 1'Vh/1I,V is plotted in Fig. 2-25. It can be observed that

as W QN 0 approaches zero (which results when the detector is "bad" and/or the input

noise is negligeable), W h, approaches 146 (the largest it can get). On the other hand, as

WQN 0 becomes large (which results from a "good" detector or powerful input noise), W h

approaches 0.742 W. (the result already found and given in Eq. (2.50)) indicating that

emphasis is now on the effect of the input rather than the detector noise.
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2.8.4. Realistic 2-D example

In this section, we illustrate the design of OPOF in the presence of detector noise

with the help of a 2-D realistic signal. We assume white input noise. \Vith this assumption,

the discrete approximation to Eq. (2.96) is given by

K ]2

SNR(K) - (2.102)
No (QAT)L + K

where in the above equation, we assume that the pixel magnitudes S(i)I, i---1,..., d,

have been sorted in descending order.

We have modified our algorithm for support selection to take into account the extra

term in Eq. (2.102) due to the detector noise. We have applied the modified algorithm on

the tank image shown in Fig. 2-3. As already mentioned, we expect the supports

generated to depend on the factor QN o . The larger its value, the more we weigh the input

noise with respect to the detector noise and vice-versa. This is illustrated by Figures 2-26
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- 28. I igurc 2-26 .,Iiows the - )prt of tP( h 1 -0l' with 1. I As cxpected, it. i, t,hi,

same as in Figure 3, sinee for large values of QAN0 we tend to ignore the detector noise all

together. Figure 2-27 shows the support with Q N0=.001. The support size has grown

from 59 pixels to 1.181 pixels. This larger support allows more input light through to

counteract the detector noise. Finally, 'gure 2-28 shows the case where QNO-10-5. The

support has expanded almost to the maximum it can get to, since now the detector is the

limiting factor in the system.

Figure 2-26: OPOF support with QN 0>> 1.

Figi 'e 2-27: OPOF support with ! -0.001.

2.9. Conclusion

In this chapter we investigated ways of designing optimal (in the sense of maximizing

the Signal-to-Noise Ratio) phase-only filters (POFs). We introduced the notion of OPOFs

which are obtained by determining the phase functions that maximize the resulting SNR.

These OPOFs happen to have the same phase functions as the conventional FOFs except
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111
Figure 2-28: OPOF support with Q.=N010-5

that their supports must be chosen carelully. While we have not determined the exact

nature of the support for arbitrary signal and noise scenarios, we were able to provide

some characterizations that should help towards that goal. We were also able to propose a

constructive algorithm for the OPOF for the special case of signals corrupted by additive

white noise. Some observations about, the support allowed us to find a very efficient sub-

optimal algorithm for OPOF design. The loss in SNR of this highly efficient algorithm is

very negligeable compared with the speed up factor it offers. We illustrated with the help

of analytical examples as well as simulation results that the improvement in SNR obtained

from the optimal POFs can be significant. The sensitivity of POPs to input distortions

relative to OPOFs was also investigated. Our simulation results support the fact that

POFs are highly sensitive to distortions, as their performance (in terms of SNR) sharply

degraded with input rotations. On the other hand the OPOF seems to exhibit a more

robust behavior.

An obvious disadvantage associated with the proposed OPOFs is that the resulting

output correlations are broad and thus the resulting accuracy in locating the objects will

be poor. This is a direct consequence of the fact that the OPOFs have much lower

bandwidths compared to the conventional POFs. However, the larger bandwidths of the

conventional POFs allow all the input noise to pass through without any attenuation.

Thus, the conventional POF yields lower SNR values, but sharper correlation peaks

compared to the propnsed OPOFs. Thus, a choice must be made by the user as to which
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measure is more relevant to the particular application at hand. The SNR measure is

aimed at characterizing the filter performance in the presence of additive noise whereas the

correlation peak sharpness is maximized when good location accuracies are required.

Furthermore, the smaller overall support of the OPOFs will also result in less light

through-put compared to the conventional POFs. This is probably acceptable for

applications where high quality detectors are used. However, if the noise generated in the

detectors is not negligeable, or if the light budget in the system is tight, some

considerations should be given to the detector noise. This enticed us to investigate

designing OPOF in the presence of detector noise. The results we provided in this context

turned out to be an interesting generalizing framework for the design of OPOFs.

Essentially, they support our previous findings for "good enough, detectors and as their

quality degrades, less emphasis is given to the input noise by enlarging the support further.
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Chapter 3

Binary Phase-only Filters

3.1. Introduction

The previous chapter focused on the use of Phase-Only Filters (POFs) in optical

correlators. POFs are useful since they lead to simpler filters by eliminating the amplitude

variations. This constitutes a first step towards achieving real-time correlations using the

recently introduced Spatial Light Modulators (SLMs) 6' 7, 8 which operate in a phase-only

mode. Most of these devices6 ' , 25, however, function in a binary mode, hence requiring

the use of Binary Phase-Only Filters (BPOFs). Earlier efforts obtained BPOFs by a simple

binarization of POFs. Different binarization schemes were used. Some of these were based

on the binarization of the real part 3 of the POF (that we shall denote by Sr(f)), some on

the imaginary part1 0 (denoted Si(f)), and some on their sum" . However, there is no

obvious reason for choosing one scheme or the other, and this lack of rigorous

understanding precluded any consideration of optimality.

Recently, there has been some development of relevance to the design of BPOFs.

This has to do with the choice of the Threshold Line Angle (TLA) 2 6 in constructing the

BPOFs. Farn and Goodman5 provedX that the optimal (in the sense of maximum SNR)

BPOF phase assignment is equivalent to optimally selecting the TLA. This basically

divides the complex plane into two half-planes such that any phase angle (of the reference

signal) falling in one half-plane is quantized to one value and any phase angle falling in the

XiHowever, in their proof, Farn and Goondman 5 missed an important detail. We shall cover this

point in a forthcoming section.
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other half-plane is assigned the other value. Several research groups27' 11, 28, 26, 5 seem to

have independently realized that the TLA is another variable that can be optimally

selected, to improve the performance of the BPOF. Furthermore, BPOFs were in most

cases constrained to have values of +1 or -1. The justification for this is that some of the

SLMs6 operate with a 7r phase difference between the two phase values. However, some

SLMs (such as the Deformable Mirror Device (DMD) 8) allow for a much larger dynamic

range in phase. This allows the use of more general BPOFs that take on phases or iL.

Farn and Goodman 5 were the first to treat this more general BPOF and optimally solve

for and , to maximize the SNR.

Nevertheless, all the above approaches still lacked an important ingredient in the

design of BPOFs. No attention was given to the the support function which was taken to

be arbitrarily large. As argued in the POF case, this could cause the output SNR to be low

(possibly zero!). Thus, even though some of the parameters involved in BPOFs have been

optimally chosen, the above designs are not truly optimal (in the sense of maximum SNR).

In this work, we aim at filling this gap by incorporating the support function within the

design of BPOFs. While Farn and Goodman 5 have proposed an efficient method for

selecting the TLA for a given support, wve shall consider the selection of both the TLA and

the support simultaneouslyxii. This will allow us to assess the relative effect of these two

design parameters on the SNR. We will show through numerical evaluations that choosing

the optimal support function seems to increase the SNR by about 4 to 6 dB, whereas

choosing the optimal TLA seems to increase the SNR only by about 1 to 2 dB (this

confirms earlier 28 theoretical predictions that varying the TLA would not improve the

SNR by more than 2 dB).

XiiWith the introduction of the support, function in BPOF, the filter is not two-valued any more.

It takes on the two phase values (e.g., ir and 0) with amplitude 1 as well as the zero amplitude.
Thus, it should perhaps be termed the ternary-valued filter or ternary phase-amplitude filter

(TPAF)2 9 .
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In this chapter, We shall propose efficient algorithms for the design of the optimal

BPOFs. The first is an extension of the algorithm presented in the previous chapter. The

second, a very efficient sub-optimal algorithm, is also a generalization of the sub-optimal

algorithm presented earlier. Hence, in some sense, this chapter can be regarded as an

extension of the previous one. This extension will be clearest when we show that the

algorithms of the previous chapter can be applied to the BPOF case after slight

modifications. This has the implication that many of the results we obtained with the

POF also hold with BPOFs. Thus, the effect of detector noise, the window approximation

to the support, etc., all follow directly from the POF case. In an effort to minimize the

redundancy, we shall be concerned mainly with the salient design aspects of BPOFs that

did not arise while treating POFs. Amongst such aspects is the bifurcation phenomenon3 0

The remainder of this chapter is divided as follows. In Section 2 we provide the

analysis necessary to introduce our first algorithm for optimal BPOF design. Section 3

presents some numerical and simulation results using realistic 2-D images. Section 4

outlines a very efficient sub-optimal algorithm. Section 5 is used to show how to cast the

BPOF design in the context of the POF. This will help to make use of some of the

previous results. Furthermore, we shall provide in that section a more rigorous proof of the

main result of Farn and Goodman3 regarding Optimal BPOFs. In section 6 we investigate

the bifurcation issue, characteristic of BPOF. Section 7 presents some computer

simulations about the sensitivity of 13POF and Optimal BPOFs to input d; .ortions.

Finally we provide a summary in Section 8.
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3.2. Efficient Algorithm for Optimal BPOF Design

3.2.1. Analysis

In the following, we assume BPOFs to be constrained to take on the values +1 or -1.

The two remaining parameters at hand in the design of BPOFs are the TLA 0 and the

support. Thus, the BPOF is written as

H(f) 'R Sgn(Sr(f) cos(O) + S.(f)sin(o)) , (3.1)

where 1,,is the indicator function for region R (the support) and where Sgn(x) is defined as

+1 if x > 0Sgn(x) = -(3.2)
-1 otherise

Hence, We now focus on the sign of (Sr(f) cos(O) -,- Si(f) sin(O)) instead of Sr(f) or St(f)

alone. Geometrically, this can be described as projecting the complex vector S(f) onto the

unit vector with coordinates (cos(0),sin(0)) and assigning the sign of the projection to the

BPOF. This is illustrated in Figure 3-1. The BPOF form given in Eq. (3.1) unifies all the

binarization schemes that have been proposed. Hence, 0 = 0 corresponds to the

binarization with respect to the real part 3 of S(f). 0 = 90 corresponds to the

10binarization with respect to the imaginary part , and 0 = 45 * to the Hartley transform

binarization scheme 1

Now we seek to find the optimal values for 0 and R to maximize the SNR given by

I f S(f) H(f) df 12

SNR= , (3.3)

f P,,(f) I H(f) 2 df

where the limits of integration are from -oo to +oo. The idea is to fix 0 and optimize for

that choice the SNR with respect to the support R. This process is repeated for all possible
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Im

H(f)= +1

H(f)= -1

Figure 3-1: General binarization scheme

values of TLA, and the combination of TLA-support that yields the largest SNR is

selected. Let 0 be fixed. Let us define the partition ()',R2) of Z (i.e., A R = 0 and

II UA R2 == R ) as follows:

R, {fE • jS(f) cos(0)j > IS.(f) sin(O)j} (3.4)

and

R { f E R I Sr(f) cos(O) I :K ISi(f) sin(0)} (3.5)

For real s(x), St(f) is even symmetric and Si(f) is odd symmetric. Thus, R, and P, can

be seen to possess even symmetry XVI . Using Eq. (3.1) in the SNR expression (Eq. (3.3))

and using the fact that R and R2 are symmetric, we get

xviWe are implicitly assuming that P is even-symmetric, i.e., if a particular spatial frequency f

is contained in P, then its negative -f is also contained in P. We can construct counter examples
where asymmetric choices for R yield higher SNR values than the best symmetric choice. However,

symmetric R choices yielded the best SNR whenever B(x) corresponded to a real, positive function.
Thus, we believe that (even though we are unable to prove it) for real image correlations we can
assume that R is even-symmetric without loss of optimality.
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If (S (f) + J Si(f))Sgn[Sr(f)cos(O) + Si(f) sin(O)l dfI2

IU 
r

SNR=

S Pn(f) df

If S (f) Sgn[S (f) cos(O)I df + j f S(f)Sgn[S-(f)sin(O)jdf 12

R P,(f)df

I Sgn[cos(O)] I Sr(f) I df + jSgn[sin(O)j 4 S(fA I df 12

I P(f) df

IS(f)l df]2  + [J IS.(f)ldf]2

1 - - (3.6)
f P(f)df
"I' U RO

In the above we made use of the fact that Sgn (A + B) = Sgn (A) whenever JAI > JBI.

Let us note that 0 need not be outside the range (0,7r/21. First, from Eq. (3.1), if 1H(f) is

obtained using angle 0 and if H'(f) is obtained using 01 = 0+ir, then

H'(f) = -H(f) . (3.7)

This svaling does not affect the SNR and can be ignored. Furthermore, from Eq. (3.6), it

is observed that the only way 0 affects tile SNR is through the partition (Rl,2). Again,

by looking at Eqs. (3.4), (3.5), we conclude that angles 0 and 0" = r - 0 will yield the

same regions RP R, Hence, we only need to consider values of 0 in the range 10,7r/2).

It turns out that we can apply the same idea (in the discrete domain) as in the

OPOF case for white noise to find an efficient way of optimizing the SNR in Eq. (3.6).

For a given 0, we define the two regions
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P = { , I(i)cos(0)I > IS,(i)sin(O)j} (3.8)

and

P2 = { i ISr(i) cos(O) <_ ISi(i) sin(O)}. (3.9)

The values ISr()I for i E P and the values IS.(i)l for i E P2 are then sorted in

descending order. Hence, a discrete approximation for Eq. (3.6) is

K _ ]2 + Ki2

SNR -K- , (3.10)

where K 1 and K 2 denote the number of pixels in P1 and P,,, respectively. Here the

superscript i in I S I and I SI refers to the ith largest value in the corresponding array.

Now, we need to find the optimal values of K, K2 through a search along the grid

(i.e., we fix K 1 and find the optimal value of K2 and repeat this process for all values of

K 1 and choose the best case). The next section presents the details of this optimization

algorithm.

3.2.2. Algorithm

STEP 0: Determine P, and P, according to Eqs. (3.8) (3.9). Let N, and N,

denote the number of pixels in P and P,' respectively. Without loss of

generality, assume that N, < N 1.

STEP 1: Arrange ISr(m)l for M E P and IS.(m)l for n C P2, in the following
order.

II I '-. > "". >1i' I .' . > I S l
r

IS l > is'1 is .. 1 . " . > I e. -I. (3.11)

Set all parameters such as ki, k2, k IPT, k SNR MAX RES
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(real-part running sum) and IMSUM (imaginary-part running sum) to
zero.

STEP 2: k - kI + 1

RESUM - RESUM + j.k1j

SNR (k-,k) = [(RESUM) 2 + (IMSUM) 2 /(k+k,)

If SNR (k1 ,k 2 ) >_ SNR MAX' SNR MAX = SNR (k1 ,k 2 ),
k O PT OPT =k 9 .

ki k Iand k 2k0

Otherwise, no changes.

STEP 3: If ki < N,, go to Step 2.

Otherwise, k2 - (k2+1).

Ifk 2 > N, go to Step 4.

Otherwise, RESUM --0, ki = 0, IMSUM =- IMSUM + IS21
t

Go to Step 2.

STP4:OtptOPT OPT OPT OPT
STEP 4: Output kO  k2 and SNR MAX Knowing k P  and k PT

defines the optimal support uniquely.

The above steps are repeated for all possible values of TLA 0, and the case leading to

tie best SNR is selected. Numerical evaluations illustrating the resultant performance

improvement by applying the above algorithm are presented in the next section.

3.3. Numerical Results

To illustrate the improvements possible with the optimal BPOF, we performed

numerical experiments using the same 32X32 tank image used previously. This image was

placed in a 64X64 array and zero-padded to reduce sampling effects. The center of the

tank image was made to coincide with the origin of the 64X64 array. As pointed out by

Cottrell et. al.11 , the performance of BPOF is a strong function of the image center and we

ensured that the image is centered at the origin. This image has an energy of 73860 in its

even part and 48708 in its odd part. This corresponds to a total image energy of 122568.
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.s mllng III,- v llo v:rrli.". ' "\ , hk. I . etpresents a M :i..ll. I"iltg'r (Nl") s.\I

equal to 122568 or 50.88 dI1.

Next, we performed the 64 X 64 21) FILst. Fourier Transform (FFT) o the array and

used the efficient algorithm outlined in the previous section to identify the optimal PI and

P2 for several 0 values. We also computed the resulting optimal SNR OF the Horner

efficiency 6 for the optimized BPOF and SNR BtF obtained by using a BIOF whose

support is the entire 64X64 array. The SNR values are shown in Fig. 3-2 as a function of

the Threshold Line Angle. Note from Fig. 3-2 that all BPOF SNRs are lower than the

50"

40

C--O

Legend

40Po

0, 20o ,0 6'0 80o 00;
TLA (in Degrees)

Figure 3-2: Output SNR (vs) PLA for BPOF and Optimal BPOF

for centered tank.

50.88 dB provided by the classical MF. The unoptimized BPOF yields SNR values ranging

from 40.25 d13 (for 0 = 90 * ) to 41.15 dB (for 0 = 0 0 ). This represents a degradation of

about 10 dB in SNR. On the other hand, the optimized BPOF yields SNR values ranging

from 44.68 dB (for 0 = 65 °) to 46.68 dB (for 0 = 0 o). This represents a degradation in

SNR from 4.2 dB to 6.2 dB compared to the matched filter. Thus an SNR improvement of
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5 d3 can be obt.ined (for the partwicilair r'.. , 'tdtidicd) I .l . I la. s1 jllc II.C 1 .1)( .,

the BPOF in an op~timal minanner . This observation sel . to be .ru(' I)r s .ciiilalkl all U

values.

In Fig. 3-3(a)-3-3(c), we show the optimal support function for 0 (= 0 ° (33 pixels

"ON"), 0 600 (19 pixels "ON"), and 0=900 (58 pixels "ON"), respectively. In

(a) (b)(c

Figure 3-3: Optimal supports for 0 = 00 0 90 0 using centered tank.

particular, note the two unconnected regions in Fig. 3-3(c) for the support function. In

Fig. 3-4, we show the Homer light efficiency of optimal I3POFs as a function of the

Threshold Line Angle. Note from Figs. 3-2 and 3-4 that the Horner efficiency of the

optimized BPOFs exhibits more fluctuations than the S1'"R a. the TLA varies, changing

between 56.6% (for 0 = 0 0 ) and 35.9% (for 0 = 60 ). It is interesting to note that as 0

Of-',gradually changes from 0 to 60 both SNR BPOF and Horner efficiency keep

decreasing. Hence, in this regard, 0 = 60 * could be considered as a "worst case" TLA.

As already mentioned, the performance of BPOFs strongly depends on the position of

the reference image in the FFT array at the time the filter is synthesized. In the above

results, the tank has been centered in the FFT array. To investigate the effect of moving

the reference image around, we positioned the tank in the upper left corner of the 64 by 64

FFT array. The energy in the even and odd part became both equal to 61283.9. This is to

be expected, since the flipped version of the tank now has no overlap with the tank image

itself. The numerical results in this case are summarized in Figs. 3-5 and 3-6 which are the
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Figure 3-4: Horner light efficiency (vs) TLA for centered tank.
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Figure 3-5: Output SNIZ (vs) TLA for BPOF and Optimal BPOF
for non-centered tank.
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the output, SNR for both IPO]'F and OBPOF corresponding for TLAs greater than 15 have

now increa-scd. Actually, this happened even to the extent that the OBPOF(im) now yields

the highest output SNR. This is a direct consequence that we have given more weight to

oo

9o

8o-

70-
C)

6Z 0

50 1
/ Legend

a 0OPOF

30 0•TOOPOF-

TLA (in Degrees) I

Figure 3-6: Horner light efficiency (vs) TLA
for non-centered tank.

the imaginary part of S(f) by redistributing the signal energy more evenly.

All the results presented above are based on numerically evaluating the SNR in Eq.

(3.10). Some simulations were carried out on the same tank image. Six filters were used:

the BPOF and optimized BPOF corresponding to 0 = 0 , 45 ", 90 These filters are the

same as those used in our numerical computation of SNRs with the tan!, centered in the

FFT array. We obtained an estimate of output SNRs with all six filters by adding zero-

mean, unit variance Gaussian noise to the tank image. Next, the corrupted image is

padded with zeros, and a 64 by 64 FFT is computed. The correlation outputs at the origin

are then recorded. This process is repeated 100 times and estimates of SNRs are computed
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through av~eraginig. Fig. 3-7 depicts tlic output '_-lAA u. a flict toi of' tupiti. fNI H Ib

BlPOFs correspOnlditlg t~o 0 = 00' (this case is denoted by BPlOF(re)), 0 15' (d'-tiotcd

I3POF(ha)), and 0=90 o (denoted I3POF(Im)). Even though the three cur%,(.,, are. close

together, a hierarchy can be observed whcrein the BPOF(rc) yields the highest .SNR

followed by BPOF(ha), and finally by BPOF(im). This is in agreement withl the numerical

evaluations presented in Fig. 3-2. Fig. 3-8 is analogous to Fig. 3-7 except, we uise the

'"A

~501
Q: I

Z

o251

S201 -4

'5 Legend

C1 epCr(-n)

S aore.)

-~ INPUT SNR (dB)25 0OFho

Figure 3-7: Output SNR (vs) input SNR for
BPOF(re), BPOF(ha), and BPOF(im) using centered tank.

Optimal BPOFs instead. It can be seen that the support optimization provided an

improvement in SNR by 5 to 6 dB. Furthermore, the OBPOF(re) yielded an SNR slightly

higher than the OBPOF(ha). The output SNR of the Ol3POF(im) is noticeably below both

that of the other two filters. In addition, we noticed that the output SNR (in all1 cases)

corresponding to an input noise variance of I (i.e., a 0 dB input SNR) are all within 1.4 dB

from the numerically computed values. Table 3-1 summarizes our results. Moreover, as

an illustration, Fig. 3-9 depicts the output SNR of I3POF(re) and OI3POF(re) in reference
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Figure 3-8: Output SNR (vs) input SNR for
OBPOF(re), OBPOF(ha), and OBPOF(im) using centered tank.

Output SNR(dB)

Simulation Numerical

BPOF OBPOF BPOF OBPOF

0=0 41.68 48.05 41.15 46.68

0=45 41.4 47.85 40.72 46.51

0=90 41.0 45.88 40.25 44.S2

Table 3-1: Simulation (vs) numerical results BPOFs and OBPOF.-
using tank image.

to the MSF, POF, and OPOF found in the previous chapter. A clear hierarchy can I)

olserved. First, and ,as expected, the ,\ISF ha-s the highest SNR followed IY tire ()10(
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(with 1.5 (l1 lcss SNlP). Nex t hIs ()p i IH'01" with b;oul, 3 (t IsS SNI 1luau1 lic

MSF followed by the POF with a degradi.i,,ln of the order of 5 dB. At the lowest rank is

the BPOF with an output SNR approximately 10 (113 lower than the MSI and 5 dll lower

than the POF. This last result is within t.he maximum 6 dB drop in SNR due to

binarization predicted by Dickey et al. 23.

0 1

40'

• 0 ,/

Legend
20- •I

[0 PoF"

is- * OPO
'o'

0- /

10 -7'' 2

INPUT SNR (dB)

Figure 3-/: OutputSNR(vs) inputSNR for

MSF, POF, OPOF, BPOF(re), and OBPOF(re) using centered tank.

All the above numerical evaluations and simulation results were carried out for the

pliers image presented in the previous chapters. The improvement in SNR due to the

support optimization varied from 2 to 4 dB. All simulations were also within 1.2 dB from

the numerically computed SNRs. Furthermore, ahaost all of the observations and trends

discussed for the tank image apply to the pliers. Namely, the SNR again showed little

variations with respect to the TLA (less than 0.5 dB for BPOF and about 2 dB for

OBPOF). Also, the Horner light efficiency exhibited more variations than the SNR. The

variations in this case, however, are more noticeable than loi- i e tank image and are
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Figure 3-10. Horner light efficiency (vs) TLA
for centered pliers.

shown in Fig. 3-10. Notice the large jump for TLAs equal to 85 and 90 degrees. The rest

of the data and results are rather similar to the tank example. 'We omit their presentation

for the sake of conciseness.

It can be seen from the above discussion that the TLA and support function offer

two degrees of freedom in the design of BPOFs. If light efficiency is not a problem (for

example in applications where ample light is available), it is recommended that we inVeSt

our computational resources in the optimization of the support function, assuming

0O= 0 *. The Justification for this is that SNR showed a relatively small variation (for

the particular cases studied) with respect to the TLA (about 2 dB for the optimized BPOF

and about I dB for the unoptimized I3POF) along with the fact that most images are even-

part dominated. Our simulation results further support this argument (0 =0 *yields the

best SNR and an acceptable light efficiency level). If on the other hand light is at a

premium, then more attention should be given to the TLA. For instance, 0 == 90 ' with
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the pliers image seems to be a plausible solution since it has the highest Horner efficiency

at the expense of only a 2 dB degradation in SNR.

3.4. Very Efficient Sub-Optimal Algorithm for BPOF Support

Optimization

3.4.1. Analysis

We base this very efficient algorithm on the observation summarized in the following

proposition.

Proposition 1: If the real (imaginary) part of two or more pixels in P
(P2 ) are equal in absolute value, they are either or none included in the optimal

P (P0 ).

Proof: The proof is very similar to that of the corresponding proposition
in the previous chapter. The only difference is that the optimization is now
performed on a grid. Hence, the only thing that needs to be cii; cked is that by
replacing the discrete version of the SNR expression (given in Eq. (2.65)) by

k

(Z IS(ij)) 2 + a
i==1

SNR"(k) k + b (3.12)

where a and b are arbitrary non-negative constants, the conclusion of the first
part of the proof of proposition (3) in the previous chapter is unaffected.
Namely, it can be established in exactly the same way as before that if

IS(k0)i= S(k+I for some ko > 2 and if SNR--(ko) > SNR-(ko-1),

then SNR -(ko+ 1) > SNR -(ko) *

As before, the idea is to quantize ISr(i)l i E P1 and IS(i) , i E R, By virtue of the

above proposition, instead of performing the optimization over the K 1 XK 2 grid of pixels

(K 1 (K,) is the total number of pixels in P1 (P,) ), we focus only on a NX>N grid (N is

the quantization level). In the following, we outline the steps of the algorithm.
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3.4.2. Algorithm

Below, we roughly list the steps of the efficient sub-optimal algorithm. Tile details

are left.out since they have been already presented in one way or the other.

STEP I: Find the partitions PI and P2.
Mi = Max { IS(i)I , i E Pi }
M2 = Max { IS-(I , i E P,, }
M = Max[ML, M21
S(i) - S(i)/ M , i= 1..., d.

STEP 2: Quantize lS(i)f , i E P and IS(i)I , i C P,. Assign tags to the
corresponding pixels.

STEP 3: Search through an NX N grid to get optimal levels L and L 2.

STEP 4: Get optimal P, (P,) by direct comparison with L1 (L2 ).

STEP 5: End.

Note that this grid optimization will increase the computation time by a factor of N

over that of the 1-D algorithm presented earlier. Yet, we will see shortly how to adapt the

BPOF problem to the POF algorithm. Hence, this will result in the most efficient

technique for OBPOF design. The only shortcoming of that approach (as we will see) is

that only the optimal (in the sense of maximum SNR) TLA solution will be generated. The

SNR for other TLAs as well as the Horner light efficiency will -ot be correctly computed.

This is what motivated the introduction of the above two algorithms for OBPOF design.

More will be said about this later.
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3.4.3. Numerical Results

We have implemented and tested the above algorithm. Using the same 32 by 32 tank

image and a 64 by 64 (the tank has been centered) FFT, it took 1585 seconds to find the

optimal support functions for the 19 BPOFs (corresponding to the 19 TLAs, from 0 to 90

in increments of 5 degrees) using the old Iimproved 'xv algorithm. Applying the new

algorithm with N = 256, it took only 16.8 seconds to obtain J8 supports exactly and one

support within 2 pixels (60 instead of 58 pixels). The time reduction factor is about 95. By

increasing N to 400, all the supports were computed correctly in 36.4 seconds. This lead to

a reduction factor of 4-1. It can be seen from here that the computing time of the new

algorithm is a faster increasing function of N than in the OPOF case. This is a direct

consequence of the search over a grid.

As before, we anticipate that the time reduction factor becomes more noticeable as

the number of pixels increases. We increased the FFT size to 128X 128 and focused on the

optimal support for the Hartley BPOF (TLA 45 Degrees)xv. It took 1939 seconds for

the old algorithm to find the optimal support, whereas the new algorithm with N = 256

took only 1.98 sec to find the exact answer. This is a reduction factor of about 980!

We performed some more testing on other cases (such as non-centered tank, centered

and non-centered pliers) with 64X64 size FFTs. For N - 256, 56 out of the 77 supports

were found exactly with an average reduction factor in CPU time of about 77. It is

interesting to notice that out of the 21 errors made, 17 were committed on the pliers (13 of

them on the non-centered case) and only 4 on the tank image. More generally, it was
observed that the non-centered cases (i.e., in which the energy in S(f) is almost equally

distributed between the even and odd parts of s(x)) caused the largest number of errors.

Of all these 21 errors, the worst (with the non-centered pliers, 0 = 90 0) caused a loss of

xivBy using the [leap sort algorithm.

XVNotice that this will lead to conservative results since the sorting time is smallest as the

difference in the number of pixels of PI and P. becomes smaller.
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0.00046 dB in SNR. Interestingly, this case turned out to be the most "ifl" since it

requ.cez PV as high as bOo to get the exact answer (in about 301 see.) This suggests

another enhancement to the new algorithm where we adapt N to the data (dynamic range,

smallest difference between pixels.. .etc.). For N = 400, 64 out of the 77 supports were

exactly found with an average reduction factor of about 35. The worst loss in SNR was

well within that of the case with N - 256. Once again, all the above timing estimates

were done excluding FFTs, inputs/outputs, partitioning and normalization.

3.5. Relating Optimal Designs of BPOFs and POFs

In this section, we establish a link between the optimal design of BPOFs and P'OFs.

We will show that the OPOF algorithm can be used for BPOF design. This will allow us

to make use of some of the available results related to the POF support optimization.

Thus, the issue of detector noise effect on the support function as well as the window

approximation for the support follow directly from the previous chapter. More

importantly, this link will provide us with yet another very efficient algorithm for optimal

BPOF design. Actually, this third algorithm is the most efficient of all since it does not

perform the support optimization over a grid. However, as we shall shortly see, the

information it generates (BPOF along with its optimized support, SNR and light

efficiency) is relevant only for the optimal TLA. If the variations of SNR and light

efficiency as a function of TLA is desired, one of the other two algorithms needs to be

used.

Recall that our objective is to find the BPOF H(f) that maximizes the SNR

expression given in Eq. 3-3. We shall assume for now that the support R is fixed. Using

the fact that the modulus of H(f) equals one for all frequencies, maximizing the SNR

becomes equivalent to maximizing the magnitude of the numerator of Eq. (3.3) rewritten

as
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c = j S(f) 1(f) df = I ce (3.13)

Thus, the quantity to be maximized [ci is given by

c = S(f) e- j' H(f) df

f S4(f) H(f) df

- S(f)H(f)df + i S' (f) H(f)df

= ~S(f) H(f)df, (3.14)

where SO(f) is given by

SI(f) = S(f) e-o

= [Sr(f) cos (0) + Si(f) sin (0)]

+ j[S-(f) cos (0) - Sr(f) sin (0)]. (3.15)

It can be seen from Eq. (3.14) that the optimal BPOF is given by

Ho(f) = Ip(f)Sgn [SO(f)

= Ip(f) Sgn [Sr(f) cos (0) + S (f) sin (0)] . (3.16)

Eq. (3.16) can be recognized to be identical to Eq. (3.1), and hence the argument 0 can be

looked at as the TLA. The resulting maximum value of jcj (function of R and 0) is given

by

ICIm = JlS[(f)l df. (3.17)

However, we have overlooked an important point in the above analysis. We must ensure
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that HO(f) given in Eq. (3.16) will yield tie argument 8 when used in Eq. (3.13). Actually,

this is not true in general and the maximum givei. in Eq. (3.17) is only an upper bound for

Icl with all BPOF leading to an argument of 0. This can be easily seen by applying the

fundamental integral inequality to Eq. (3.14). It turns out that this upper bound is

achieved by the optimal BPOF H (f) (it is optimal amongst all those BPOFs with

support equal to R. This . still needs to be determined) at the argument 0* it induces in

Eq. (3.13). In other words, the condition that the filter Ho(f) in Eq. (3.16) induces the

angle 0 when used in Eq. (3.13) is satisfied for 0 = 0*. This will be the subject of the

following proposition.

Proposition 2: Let H (f) be the BPOF that leads to the highest SNR

amongst all BPOFs with support Rxvi Let 0* be the argument it induces when
used in Eq. (3.13). Then,

H (f) = HO(f) , (3.18)

where, He , (f) is given by Eq. (3.16).

Proof: Xvii First, if the filter HO. (f) leads to the angle 0*, then Eq.

(3.18) follows immediately from the above analysis. Let us now assume H , (f)
induces an angle w ,? 0 * By hypothesis, the maximum possible value of IcI is
given by

dIM = eo f S(f) H * (f) df

=f S'*(f)H (f)df fIS (f) I df. (3.10)

Now using H 0 . given by Eq. (3.16) in Eq. (3.13), we get

xViln other words, H (I) leads to the largest magnitude of the integral in Eq. (3.13).

xviiwe acknowledge Fred Dickey et al. or Sandia Laboratories fo , ointing out an important

detail in this proof.
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IcI = ( (f(f) Sgn [5f(f)] ff

C -JW--O SIM -jo Sgn (f)] df

f e (f (f) + (f)] df (3.20)

Taking the magnitude of both terms in Eq. (3.20), we obtain

ICI [ (fj1,s * (f)l df)2 + (f)~* Sgn [S * (f)] df)2 ]/

rr

> (f) Idf ! I c 1 (3.21)

Absurd .

In the above, the strict inequality follows from tie assumption that

w Z 0 * xv'i. Thus the assumption that w Z 0 * does not hold, and the

result in Eq. (3.18) follows a

The next step is to maximize with respect to the support R the SNR resultant from

using H, , (f) and given by

[f '* (ldf] 2

SNI? = (3.22)

4JPn(f) df

Eq. (3.22) is very similar to Eq. (2.11) found in the previous chapter. The only difference is

that we are now using IS * (f)l instead of IS(f)j. This suggests the following very efficient

algorithm for OBPOF design based on the techniques used for the OPOF case.

Xviiilndeed, the equality happens if and only if the second term in the first line of Eq. (3.21) is

zero. This in turns happens if and only if the argument of the integral in Eq. (3.13) (=w) equals

0".
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STEP 0: 0 = - .0; SNRa = 0.

STEP 17 0 = O + A0.

STEP 2: Obtain S(f) = IRe [S(f) e-j01.

STEP 3: Apply the OPOF algorithm using IOr(f) instead of IS(f). Get

corresponding support Ro' Compute corresponding SNR. If greater than

SNR then,

SNR =SNR; 0* =0; R =R .

STEP 4: If0 < Oma x go to STEP I.

STEP 5: End.

The idea in the above algorithm is to scan all possible values of the TLA 0. Each time,

JS(f) is replaced by IS (f)l and the OPOF algorithm is applied to optimize the support of

H 0 (f). Note, however, that the computed SNR, support function, and light efficiency will

not be correct in general (unless 0 = 0 * ). Eventually, 0 = 0 * and we solve for the

optimal support, SNR, and light efficiency of H0 . (f) (the OBPOF).

We tested this third algorithm on the same images (tank and pliers) we used

previously. The optimal BPOFs solved for agree with those found using the other two

algorithms. Hence, the optimal TLA is 0 degree for both images when they were centered

in the FFT array, and 90 degrees for both when they were placed at the upper left corner.

It took around 200 seconds for the third algorithm (using the OPOF algorithm described in

the previous chapter) to generate the OBPOF versus the 1585 seconds required by the first

algorithm. This is a factor of about 8 reduction in CPU time. However, as already

mentioned, we disregarded any information related to all other TLAs but the optimal one.

Note that in this case we do not need to make the assumption that R is even symmetric.
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3.6. Bi'urcation Issue

"'he bifu :ca ion phenoni 3,ic 20. 23 is one of the most dist.inctive charact eristics of

B3POF-design. The inost importafnt factor affecting this phenomenon is the symmetry of

S(f) at the time the BPOFs are synthesized. This symmetry strongly depends on the

position of the reference image in the FFT array. To illustrate this we computed the

BPOF and OBPOF using the real part of S(f) in two cases. In the first, the tank image

was placed at the upper left corner of the FFT array and in the second it has been

centered. For better display, we decided to use 128 by 128 FFTs. Fig. 3-11 plots the

correlation of the tank image with the BPOF synthesized from the non-centered tank. The

peak= 108..

(at origin)

'.4

Figure 3-11: Correlation of tank with BPOF(re)
in the non-centered ease.

existence of a second but smaller peak is noticeable. Actually, the peak corresponds to the

autocorrelation of the tank. The second peak is the autoconvolution. Fig. 3-12 is the

counterpart of Fig. 3-11 using the OBPOF instead. It can be oe served that the second

peak became more noticeable (actually it became as large as the peak itself). Also, due to

the low pass nature of the support, both peaks have been smoothed. We repeated both

correlations with the tank centered at the time the filters are generated. Figs. 3-13 and
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pea k 20

'I (at origin)

Figure 3-12: Correlation of tank with OBPOF(re)
in the non-centcred case.

peak 114.2

(at origin)

At..

Figure 3-13: Correlation of tank with BPOF(re)
in the centered case.

3-14 show the correlations with the BPOF and OBPOF, respectively. It can be seen that

in this case the second peak has disappeared front both outputs.

A possible explanation of the bifurcation phenomenon is that due to the fact we are
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peak"22.7

(at origin)

-4 4-.i .. . .

-+ - -

Figure 3-14: Correlation of tank with OBPOF(re)
in the centered case.

using the real part of S(f), we are in effect correlating the tank image with its even (if we

accept the fact that the binarization operation preserves some of the original

information 4 7 ) part. This amounts to correlating the image with itself (i.e.,

autocorrelation) and with its flipped version (i.e., autoconvolution). When the image is

placed at the upper corner of the FFT array, its flipped version is positioned at the other

corner across from the center. The fact that there is no overlap between both causes the

two peaks to be distinct from one another. On the other hand, in the centered case, both

the tank and its flipped version are almost totally overlapping. This causes both peaks

also to overlap, appearing as a single peak.

The above argument suggests that by using other binarization schemes instead of the

real part, one could perhaps get around this bifurcation problem. In fact, we tested the

above simulations using the Hartley BPOP instead. We had little success. Actually, it can

be easily argued that using a general binarization provides no guarantee for solving this

problem. In all cases we are adding th,- correlation output to the convolution. The only

change the TLA introduces is a scaling factor that is affecting both outputs.
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3.7. Distortion Sensitivity of BPOFs tnd OI3POFs

In this section we present the results of our computer simulations to te.5t the

distortion sensitivity of BPOF and OB3POF. As in the POP case, we found that the

OBPOF has more tolerance to distortions (rotations) than the BPOF. Fig. 3-15 plots the

SNR variations as a function of rotations for both filters using the tank image (ceniiered

prior to solving for the filters). The binarization with respect to the real part has been

used. In Fig. 3-16 we incorporated the results of the MSF, PO", and OPOF obtained from

30 -

253

20lz I

\" Legend
a epor(.)

0 40 0 0GP0&'
0 20 60 0 too 120

ROTATION (degree)

Figure 3-15: Output SNR (vs) rotation for BPOF(re) and OBPOF(re)
using centered tank image.

the previous chapter as a reference. It can be observed that the MSF, OPOF, and OBPOF

seem to be the least sensitive to input distortions. At the bottom of the scale are the POP

and BPOF which exhibit a much more sensitive behaviour. Actually, the POP, even

though quite sensitive, seems to keep an SNR margin over the BPOF. This appears to be a

direct result of binarization. Finally, the hierarchy introduced earlier (i.e., MSF followed

by OPOF, OBPOF, POF, and lastly BPOF) can be seen with no input rotation. Similar
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Figure 3-16: Output SNR (vs) rotation for MSF, POF, OPOF,
BPOF(re), and OBPOF(re) using centered tank image.

results were also obtained for the pliers image. They further support the sensitivity of

BPOF with respect to OBPOF. The details will be omitted for the sake of conciseness.

3.8. Summary

In this chapter we have essentially extended our previous results to binary phase-only

filters. We presented two efficient algorithms for the design of BPOFs. These are

generalizations of the earlier algorithms. We also presented simulation results that closely

agree with the numerically computed results. We have shown, using tank and pliers image

examples, that careful selection of the support can improve the SNR by about 5 dB

compared to the unoptimized BPOFs. In contrast, selecting the proper TLA seems to

affect the light efficiency noticeably while providing an SNR increase of only I dB.

We established a link between the design of optimal BPOFs and POFs. This turned

out to be quite useful. First, it provided us with another very efficient algorithm. This lead
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to a reduction in CPU time by a factor of about 8. Thi- is because the POF algorithm,

unlike the BPOF, does not perform its optimization on a grid. However, this algorithm is

capable of generating only information pertinent to the optimal BPO!'. It does not allow

the variations of SNR and light efficiency with respect to the TLA to be monitored. This

could be important in situations where trade offs between SNR and light efficiency need to

be made. In this case, the other two algorithms should be used. Furthermore, this bridge

between BPOF and POF design also allowed us to take advantage of available results

related to support selection. Hence, the effect of the detector noise on the BPOF support

design is the same as that for the POF. Likewise, the window approximation of the

support of POF can be extended to the I3POF case. Typically about 1.5 dB loss in SNR is

expected by this approximation.

The bifurcation issue was also addressed. This phenomenon strongly depends on the

position of the input image in the FFT array at the time the filters are synthesized. This

was illustrated by showing some computer generated output correlations. The TLA does

not seem to have a noticeable effect on the bifurcation phenomenon. Finally, we provided

some simple computer simulations that test the distortion sensitivity of BPOFs and

OBPOFs. As in the POF case, the BPOF was found to be much more sensitive to input

rotation than the OBPOF. This appears to be a direct consequence of the implicit high

frequency amplification in BPOFs.

In conclusion, it seems that when sufficient light is available, the support function of

any BPOF should be optimized using the algorithms we provided. Moreover, our results

also indicate that the choice of 0 = 0 ° for TLA may be a very good choice for most

images since most realistic images have more energy in their even parts compared to the

odd parts.
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Chapter 4

Conclusion

Our research results presented here have significant implications regarding the use of

POFs and BPOFs. Most previous research has been somewhat empirical and our efforts

have produced some general observations.

Where POFs are to be employed, we strongly recommend using an appropriate

masking or support function. While the exact improvements are image-dependent, we seem

to obtain about 5 dB SNR improvement by using OBPOFs. Since POFs are expected to

function in noisy environments, we must use OPOFs to combat the noise effect. A side

benefit of using OPOFs is the reduced sensitivity to input distortions. A disadvantage of

using OPOFs is the reduced light efficiency because of the size of the support function.

The OPOFs can be implemented in practice in many different ways. One such method is

to use a sandwich of a phase-only device and an on-off device in tile frequency plane.

More important (from the practical viewpoint) are the OBPOFs. Strictly speaking,

OBPOFs are three-valued (+1, 0, and -1). These can be implemented using SLMs capable

of 3 levels. Recently, Kast et. al.32 demonstrated that MOSLMs can be used as a 3-level

device. We have shown that substantial improvements in output SNR can be obtained by

using OBPOF instead of the conventional BPOF. As in the case of OPOFs, light efficiency

is reduced and distortion sensitivity is improved.

The results of this research effort are very encouraging as far as the roles of OPOFs

and OBPOFs in practical systems are concerned. We believe that use of optimal filters in

improved SLMs will bring the optical correlator into a practical reality.
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